• 제목/요약/키워드: 사용자 관심

Search Result 2,456, Processing Time 0.028 seconds

Extraction of Landmarks Using Building Attribute Data for Pedestrian Navigation Service (보행자 내비게이션 서비스를 위한 건물 속성정보를 이용한 랜드마크 추출)

  • Kim, Jinhyeong;Kim, Jiyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.203-215
    • /
    • 2017
  • Recently, interest in Pedestrian Navigation Service (PNS) is being increased due to the diffusion of smart phone and the improvement of location determination technology and it is efficient to use landmarks in route guidance for pedestrians due to the characteristics of pedestrians' movement and success rate of path finding. Accordingly, researches on extracting landmarks have been progressed. However, preceding researches have a limit that they only considered the difference between buildings and did not consider visual attention of maps in display of PNS. This study improves this problem by defining building attributes as local variable and global variable. Local variables reflect the saliency of buildings by representing the difference between buildings and global variables reflects the visual attention by representing the inherent characteristics of buildings. Also, this study considers the connectivity of network and solves the overlapping problem of landmark candidate groups by network voronoi diagram. To extract landmarks, we defined building attribute data based on preceding researches. Next, we selected a choice point for pedestrians in pedestrian network data, and determined landmark candidate groups at each choice point. Building attribute data were calculated in the extracted landmark candidate groups and finally landmarks were extracted by principal component analysis. We applied the proposed method to a part of Gwanak-gu, Seoul and this study evaluated the extracted landmarks by making a comparison with labels and landmarks used by portal sites such as the NAVER and the DAUM. In conclusion, 132 landmarks (60.3%) among 219 landmarks of the NAVER and the DAUM were extracted by the proposed method and we confirmed that 228 landmarks which there are not labels or landmarks in the NAVER and the DAUM were helpful to determine a change of direction in path finding of local level.

A Study on Consumer Characteristics According to Social Media Use Clusters When Purchasing Agri-food Online (온라인 농식품 구매시 소셜미디어 이용 군집에 따른 소비자특성에 대한 연구)

  • Lee, Myoung-Kwan;Park, Sang-Hyeok;Kim, Yeon-Jong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.4
    • /
    • pp.195-209
    • /
    • 2021
  • According to the 2019-2020 social media usage survey conducted by the Seoul e-commerce center, 5 out of 10 consumers have experienced shopping through social media. The cost of traditional advertising media has been reduced and advertising spending on social media has risen by 74%, indicating that social media is becoming a more important marketing element. While the number of users of social media has increased and corporate marketing activities have increased accordingly, research has been conducted in various aspects of marketing such as user motivation for social media, satisfaction, and purchase intention. There was no subdivided study on the differences in the social media usage frequency of consumers in actual purchasing behavior. This study attempted to identify differences in consumer characteristics by cluster in the agrifood purchase situation by grouping them by type according to the frequency of use of social media for consumers who purchase agri-food online. Product involvement, product need, and online purchase channel Consumer characteristics such as demographic distribution, perceived risk, and eating and lifestyle in each cluster were checked for the three agrifood purchase situations including choice, and types for each cluster were presented. To this end, questionnaire data on the frequency of social media use and online agrifood purchase behavior were collected from 245 consumers, and the validity of the measurement variables was secured through factor analysis and reliability analysis. As a result of cluster analysis according to the frequency of social media use, it was divided into three clusters. The first cluster was a group that mainly used open social media, and the second cluster was a group that used both open and closed social media and online shopping malls; The third cluster was a group with low online media usage overall, and the characteristics of each cluster appeared. Through regression analysis, the effect on product involvement, product need, and purchase channel selection when purchasing agri-food online through each of the three clusters was confirmed through regression analysis. As a result of the regression analysis, the characteristic of cluster 1 in the situation of purchasing agri-food online is a male in his 30s living in a rural area who has no reluctance to purchase agri-food on social media or online shopping malls. The characteristics of cluster 2 are mainly consumers who are interested in purchasing health food, and the consumer characteristics are represented. In the case of cluster 3, when purchasing products online, they purchase after considering quality and price a lot, and the consumer characteristics are represented as people who are more confident in purchasing offline than online. Through this study, it is judged that by identifying the differences in consumer characteristics that appear in the agri-food purchase situation according to the frequency of social media use, it can be helpful in strategic judgments in marketing practice on social media customer targeting and customer segmentation.

Development Strategy for New Climate Change Scenarios based on RCP (온실가스 시나리오 RCP에 대한 새로운 기후변화 시나리오 개발 전략)

  • Baek, Hee-Jeong;Cho, ChunHo;Kwon, Won-Tae;Kim, Seong-Kyoun;Cho, Joo-Young;Kim, Yeongsin
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.55-68
    • /
    • 2011
  • The Intergovernmental Panel on Climate Change(IPCC) has identified the causes of climate change and come up with measures to address it at the global level. Its key component of the work involves developing and assessing future climate change scenarios. The IPCC Expert Meeting in September 2007 identified a new greenhouse gas concentration scenario "Representative Concentration Pathway(RCP)" and established the framework and development schedules for Climate Modeling (CM), Integrated Assessment Modeling(IAM), Impact Adaptation Vulnerability(IAV) community for the fifth IPCC Assessment Reports while 130 researchers and users took part in. The CM community at the IPCC Expert Meeting in September 2008, agreed on a new set of coordinated climate model experiments, the phase five of the Coupled Model Intercomparison Project(CMIP5), which consists of more than 30 standardized experiment protocols for the shortterm and long-term time scales, in order to enhance understanding on climate change for the IPCC AR5 and to develop climate change scenarios and to address major issues raised at the IPCC AR4. Since early 2009, fourteen countries including the Korea have been carrying out CMIP5-related projects. Withe increasing interest on climate change, in 2009 the COdinated Regional Downscaling EXperiment(CORDEX) has been launched to generate regional and local level information on climate change. The National Institute of Meteorological Research(NIMR) under the Korea Meteorological Administration (KMA) has contributed to the IPCC AR4 by developing climate change scenarios based on IPCC SRES using ECHO-G and embarked on crafting national scenarios for climate change as well as RCP-based global ones by engaging in international projects such as CMIP5 and CORDEX. NIMR/KMA will make a contribution to drawing the IPCC AR5 and will develop national climate change scenarios reflecting geographical factors, local climate characteristics and user needs and provide them to national IAV and IAM communites to assess future regional climate impacts and take action.

Multi-Category Sentiment Analysis for Social Opinion Related to Artificial Intelligence on Social Media (소셜 미디어 상에서의 인공지능 관련 사회적 여론에 대한 다 범주 감성 분석)

  • Lee, Sang Won;Choi, Chang Wook;Kim, Dong Sung;Yeo, Woon Young;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.51-66
    • /
    • 2018
  • As AI (Artificial Intelligence) technologies have been swiftly evolved, a lot of products and services are under development in various fields for better users' experience. On this technology advance, negative effects of AI technologies also have been discussed actively while there exists positive expectation on them at the same time. For instance, many social issues such as trolley dilemma and system security issues are being debated, whereas autonomous vehicles based on artificial intelligence have had attention in terms of stability increase. Therefore, it needs to check and analyse major social issues on artificial intelligence for their development and societal acceptance. In this paper, multi-categorical sentiment analysis is conducted over online public opinion on artificial intelligence after identifying the trending topics related to artificial intelligence for two years from January 2016 to December 2017, which include the event, match between Lee Sedol and AlphaGo. Using the largest web portal in South Korea, online news, news headlines and news comments were crawled. Considering the importance of trending topics, online public opinion was analysed into seven multiple sentimental categories comprised of anger, dislike, fear, happiness, neutrality, sadness, and surprise by topics, not only two simple positive or negative sentiment. As a result, it was found that the top sentiment is "happiness" in most events and yet sentiments on each keyword are different. In addition, when the research period was divided into four periods, the first half of 2016, the second half of the year, the first half of 2017, and the second half of the year, it is confirmed that the sentiment of 'anger' decreases as goes by time. Based on the results of this analysis, it is possible to grasp various topics and trends currently discussed on artificial intelligence, and it can be used to prepare countermeasures. We hope that we can improve to measure public opinion more precisely in the future by integrating empathy level of news comments.

Analysis the Appropriate Schedule for the Installment Payment Amount and Establishment of the Post sale System and Policy in the Apartment Construction (공동주택 건설사업에서 후분양의 제도 및 정책 수립을 위한 분담금 납부 적정시기 분석)

  • Yoon, Inhwan;Bae, Byungyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.4
    • /
    • pp.59-65
    • /
    • 2021
  • Since the 2016 "Housing Act Partial Amendment" and the "2018 Housing Comprehensive Amendment Plan", interest in the pre sale system and post sale system of apartment houses has been on the rise. In order to compare the advantages and disadvantages of the pre sale system and the post sale system of apartment houses, and to establish the basis for the institutional policy of the post sale system, a questionnaire survey method was used for tenants of the apartment house from the public side, and issues of time and cost. The time series analysis method is intended to suggest an appropriate time for payment of contributions. Accordingly, through a review of existing theories and literature, the post sale system of public and private institutions was organized, and through a questionnaire survey, the path to securing pre sale money, product information of the model house, and the degree of awareness of the effect of the post sale system were investigated. For the post sale fund support and payment method, it is necessary to increase the commercial line for existing financiers from the user's point of view, and it is necessary to operate in consideration of the economic power of the pre sale market by region. Both 60% post sale and 80% post sale have a price range of up to KRW 10 million, and the total interest rate is 5.0%, and the annual interest rate is about 2.8% for 60% post sale, and about 2.1% for 80% post sale, which is lower than the current 3.1%. I need an interest rate. The research is a perception survey targeting a total of 5,213 households in a sample of after sale apartments in public institutions. As the actual values are analyzed using a time series on the effects of market supply and demand and market prices, there is a limit to applying them to prospective residents of private apartments. In addition, to respond to first time tenants, a questionnaire survey was conducted on five complexes that have moved in within the last five years.

Analysis of Social Trends for Electric Scooters Using Dynamic Topic Modeling and Sentiment Analysis (동적 토픽 모델링과 감성 분석을 활용한 전동킥보드에 대한 사회적 동향 분석)

  • Kyoungok, Kim;Yerang, Shin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2023
  • An electric scooter(e-scooter), one popularized micro-mobility vehicle has shown rapidly increasing use in many cities. In South Korea, the use of e-scooters has greatly increased, as some companies have launched e-scooter sharing services in a few large cities, starting with Seoul in 2018. However, the use of e-scooters is still controversial because of issues such as parking and safety. Since the perception toward the means of transportation affects the mode choice, it is necessary to track the trends for electric scooters to make the use of e-scooters more active. Hence, this study aimed to analyze the trends related to e-scooters. For this purpose, we analyzed news articles related to e-scooters published from 2014 to 2020 using dynamic topic modeling to extract issues and sentiment analysis to investigate how the degree of positive and negative opinions in news articles had changed. As a result of topic modeling, it was possible to extract three different topics related to micro-mobility technologies, shared e-scooter services, and regulations for micro-mobility, and the proportion of the topic for regulations for micro-mobility increased as shared e-scooter services increased in recent years. In addition, the top positive words included quick, enjoyable, and easy, whereas the top negative words included threat, complaint, and ilegal, which implies that people satisfied with the convenience of e-scooter or e-scooter sharing services, but safety and parking issues should be addressed for micro-mobility services to become more active. In conclusion, this study was able to understand how issues and social trends related to e-scooters have changed, and to determine the issues that need to be addressed. Moreover, it is expected that the research framework using dynamic topic modeling and sentiment analysis will be helpful in determining social trends on various areas.

Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis (철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안)

  • Eunkyung Kang;Seonuk Yang;Jiyoon Kwon;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.79-105
    • /
    • 2023
  • Due to unprecedented extreme weather events such as global warming and climate change, many parts of the world suffer from severe pain, and economic losses are also snowballing. In order to address these problems, 'The Paris Agreement' was signed in 2016, and an intergovernmental consultative body was formed to keep the average temperature rise of the Earth below 1.5℃. Korea also declared 'Carbon Neutrality in 2050' to prevent climate catastrophe. In particular, it was found that the increase in temperature caused by greenhouse gas emissions hurts the environment and society as a whole, as well as the export-dependent economy of Korea. In addition, as the diversification of transportation types is accelerating, the change in means of choice is also increasing. As the development paradigm in the low-growth era changes to urban regeneration, interest in idle railway sites is rising due to reduced demand for routes, improvement of alignment, and relocation of urban railways. Meanwhile, it is possible to partially achieve the solar power generation goal of 'Renewable Energy 3020' by utilizing already developed but idle railway sites and take advantage of being free from environmental damage and resident acceptance issues surrounding the location; but the actual use and plan for these solar power facilities are still lacking. Therefore, in this study, using the big data provided by the Korea National Railway and the Renewable Energy Cloud Platform, we develop an algorithm to discover and analyze suitable idle sites where solar power generation facilities can be installed and identify potentially applicable areas considering conditions desired by users. By searching and deriving these idle but relevant sites, it is intended to devise a plan to save enormous costs for facilities or expansion in the early stages of development. This study uses various cluster analyses to develop an optimal algorithm that can derive solar power plant locations on idle railway sites and, as a result, suggests 202 'actively recommended areas.' These results would help decision-makers make rational decisions from the viewpoint of simultaneously considering the economy and the environment.

Study on 3D Printer Suitable for Character Merchandise Production Training (캐릭터 상품 제작 교육에 적합한 3D프린터 연구)

  • Kwon, Dong-Hyun
    • Cartoon and Animation Studies
    • /
    • s.41
    • /
    • pp.455-486
    • /
    • 2015
  • The 3D printing technology, which started from the patent registration in 1986, was a technology that did not attract attention other than from some companies, due to the lack of awareness at the time. However, today, as expiring patents are appearing after the passage of 20 years, the price of 3D printers have decreased to the level of allowing purchase by individuals and the technology is attracting attention from industries, in addition to the general public, such as by naturally accepting 3D and to share 3D data, based on the generalization of online information exchange and improvement of computer performance. The production capability of 3D printers, which is based on digital data enabling digital transmission and revision and supplementation or production manufacturing not requiring molding, may provide a groundbreaking change to the process of manufacturing, and may attain the same effect in the character merchandise sector. Using a 3D printer is becoming a necessity in various figure merchandise productions which are in the forefront of the kidult culture that is recently gaining attention, and when predicting the demand by the industrial sites related to such character merchandise and when considering the more inexpensive price due to the expiration of patents and sharing of technology, expanding opportunities and sectors of employment and cultivating manpower that are able to engage in further creative work seems as a must, by introducing education courses cultivating manpower that can utilize 3D printers at the education field. However, there are limits in the information that can be obtained when seeking to introduce 3D printers in school education. Because the press or information media only mentions general information, such as the growth of the industrial size or prosperous future value of 3D printers, the research level of the academic world also remains at the level of organizing contents in an introductory level, such as by analyzing data on industrial size, analyzing the applicable scope in the industry, or introducing the printing technology. Such lack of information gives rise to problems at the education site. There would be no choice but to incur temporal and opportunity expenses, since the technology would only be able to be used after going through trials and errors, by first introducing the technology without examining the actual information, such as through comparing the strengths and weaknesses. In particular, if an expensive equipment introduced does not suit the features of school education, the loss costs would be significant. This research targeted general users without a technology-related basis, instead of specialists. By comparing the strengths and weaknesses and analyzing the problems and matters requiring notice upon use, pursuant to the representative technologies, instead of merely introducing the 3D printer technology as had been done previously, this research sought to explain the types of features that a 3D printer should have, in particular, when required in education relating to the development of figure merchandise as an optional cultural contents at cartoon-related departments, and sought to provide information that can be of practical help when seeking to provide education using 3D printers in the future. In the main body, the technologies were explained by making a classification based on a new perspective, such as the buttress method, types of materials, two-dimensional printing method, and three-dimensional printing method. The reason for selecting such different classification method was to easily allow mutual comparison of the practical problems upon use. In conclusion, the most suitable 3D printer was selected as the printer in the FDM method, which is comparatively cheap and requires low repair and maintenance cost and low materials expenses, although rather insufficient in the quality of outputs, and a recommendation was made, in addition, to select an entity that is supportive in providing technical support.

Efficient Topic Modeling by Mapping Global and Local Topics (전역 토픽의 지역 매핑을 통한 효율적 토픽 모델링 방안)

  • Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.69-94
    • /
    • 2017
  • Recently, increase of demand for big data analysis has been driving the vigorous development of related technologies and tools. In addition, development of IT and increased penetration rate of smart devices are producing a large amount of data. According to this phenomenon, data analysis technology is rapidly becoming popular. Also, attempts to acquire insights through data analysis have been continuously increasing. It means that the big data analysis will be more important in various industries for the foreseeable future. Big data analysis is generally performed by a small number of experts and delivered to each demander of analysis. However, increase of interest about big data analysis arouses activation of computer programming education and development of many programs for data analysis. Accordingly, the entry barriers of big data analysis are gradually lowering and data analysis technology being spread out. As the result, big data analysis is expected to be performed by demanders of analysis themselves. Along with this, interest about various unstructured data is continually increasing. Especially, a lot of attention is focused on using text data. Emergence of new platforms and techniques using the web bring about mass production of text data and active attempt to analyze text data. Furthermore, result of text analysis has been utilized in various fields. Text mining is a concept that embraces various theories and techniques for text analysis. Many text mining techniques are utilized in this field for various research purposes, topic modeling is one of the most widely used and studied. Topic modeling is a technique that extracts the major issues from a lot of documents, identifies the documents that correspond to each issue and provides identified documents as a cluster. It is evaluated as a very useful technique in that reflect the semantic elements of the document. Traditional topic modeling is based on the distribution of key terms across the entire document. Thus, it is essential to analyze the entire document at once to identify topic of each document. This condition causes a long time in analysis process when topic modeling is applied to a lot of documents. In addition, it has a scalability problem that is an exponential increase in the processing time with the increase of analysis objects. This problem is particularly noticeable when the documents are distributed across multiple systems or regions. To overcome these problems, divide and conquer approach can be applied to topic modeling. It means dividing a large number of documents into sub-units and deriving topics through repetition of topic modeling to each unit. This method can be used for topic modeling on a large number of documents with limited system resources, and can improve processing speed of topic modeling. It also can significantly reduce analysis time and cost through ability to analyze documents in each location or place without combining analysis object documents. However, despite many advantages, this method has two major problems. First, the relationship between local topics derived from each unit and global topics derived from entire document is unclear. It means that in each document, local topics can be identified, but global topics cannot be identified. Second, a method for measuring the accuracy of the proposed methodology should be established. That is to say, assuming that global topic is ideal answer, the difference in a local topic on a global topic needs to be measured. By those difficulties, the study in this method is not performed sufficiently, compare with other studies dealing with topic modeling. In this paper, we propose a topic modeling approach to solve the above two problems. First of all, we divide the entire document cluster(Global set) into sub-clusters(Local set), and generate the reduced entire document cluster(RGS, Reduced global set) that consist of delegated documents extracted from each local set. We try to solve the first problem by mapping RGS topics and local topics. Along with this, we verify the accuracy of the proposed methodology by detecting documents, whether to be discerned as the same topic at result of global and local set. Using 24,000 news articles, we conduct experiments to evaluate practical applicability of the proposed methodology. In addition, through additional experiment, we confirmed that the proposed methodology can provide similar results to the entire topic modeling. We also proposed a reasonable method for comparing the result of both methods.

Research Trend Analysis Using Bibliographic Information and Citations of Cloud Computing Articles: Application of Social Network Analysis (클라우드 컴퓨팅 관련 논문의 서지정보 및 인용정보를 활용한 연구 동향 분석: 사회 네트워크 분석의 활용)

  • Kim, Dongsung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.195-211
    • /
    • 2014
  • Cloud computing services provide IT resources as services on demand. This is considered a key concept, which will lead a shift from an ownership-based paradigm to a new pay-for-use paradigm, which can reduce the fixed cost for IT resources, and improve flexibility and scalability. As IT services, cloud services have evolved from early similar computing concepts such as network computing, utility computing, server-based computing, and grid computing. So research into cloud computing is highly related to and combined with various relevant computing research areas. To seek promising research issues and topics in cloud computing, it is necessary to understand the research trends in cloud computing more comprehensively. In this study, we collect bibliographic information and citation information for cloud computing related research papers published in major international journals from 1994 to 2012, and analyzes macroscopic trends and network changes to citation relationships among papers and the co-occurrence relationships of key words by utilizing social network analysis measures. Through the analysis, we can identify the relationships and connections among research topics in cloud computing related areas, and highlight new potential research topics. In addition, we visualize dynamic changes of research topics relating to cloud computing using a proposed cloud computing "research trend map." A research trend map visualizes positions of research topics in two-dimensional space. Frequencies of key words (X-axis) and the rates of increase in the degree centrality of key words (Y-axis) are used as the two dimensions of the research trend map. Based on the values of the two dimensions, the two dimensional space of a research map is divided into four areas: maturation, growth, promising, and decline. An area with high keyword frequency, but low rates of increase of degree centrality is defined as a mature technology area; the area where both keyword frequency and the increase rate of degree centrality are high is defined as a growth technology area; the area where the keyword frequency is low, but the rate of increase in the degree centrality is high is defined as a promising technology area; and the area where both keyword frequency and the rate of degree centrality are low is defined as a declining technology area. Based on this method, cloud computing research trend maps make it possible to easily grasp the main research trends in cloud computing, and to explain the evolution of research topics. According to the results of an analysis of citation relationships, research papers on security, distributed processing, and optical networking for cloud computing are on the top based on the page-rank measure. From the analysis of key words in research papers, cloud computing and grid computing showed high centrality in 2009, and key words dealing with main elemental technologies such as data outsourcing, error detection methods, and infrastructure construction showed high centrality in 2010~2011. In 2012, security, virtualization, and resource management showed high centrality. Moreover, it was found that the interest in the technical issues of cloud computing increases gradually. From annual cloud computing research trend maps, it was verified that security is located in the promising area, virtualization has moved from the promising area to the growth area, and grid computing and distributed system has moved to the declining area. The study results indicate that distributed systems and grid computing received a lot of attention as similar computing paradigms in the early stage of cloud computing research. The early stage of cloud computing was a period focused on understanding and investigating cloud computing as an emergent technology, linking to relevant established computing concepts. After the early stage, security and virtualization technologies became main issues in cloud computing, which is reflected in the movement of security and virtualization technologies from the promising area to the growth area in the cloud computing research trend maps. Moreover, this study revealed that current research in cloud computing has rapidly transferred from a focus on technical issues to for a focus on application issues, such as SLAs (Service Level Agreements).