• Title/Summary/Keyword: 사용자 관심

Search Result 2,456, Processing Time 0.029 seconds

Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs (TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석)

  • Choeh, Joon Yeon;Baek, Haedeuk;Choi, Jinho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.163-176
    • /
    • 2014
  • Social media is becoming the platform for users to communicate their activities, status, emotions, and experiences to other people. In recent years, microblogs, such as Twitter, have gained in popularity because of its ease of use, speed, and reach. Compared to a conventional web blog, a microblog lowers users' efforts and investment for content generation by recommending shorter posts. There has been a lot research into capturing the social phenomena and analyzing the chatter of microblogs. However, measuring television ratings has been given little attention so far. Currently, the most common method to measure TV ratings uses an electronic metering device installed in a small number of sampled households. Microblogs allow users to post short messages, share daily updates, and conveniently keep in touch. In a similar way, microblog users are interacting with each other while watching television or movies, or visiting a new place. In order to measure TV ratings, some features are significant during certain hours of the day, or days of the week, whereas these same features are meaningless during other time periods. Thus, the importance of features can change during the day, and a model capturing the time sensitive relevance is required to estimate TV ratings. Therefore, modeling time-related characteristics of features should be a key when measuring the TV ratings through microblogs. We show that capturing time-dependency of features in measuring TV ratings is vitally necessary for improving their accuracy. To explore the relationship between the content of microblogs and TV ratings, we collected Twitter data using the Get Search component of the Twitter REST API from January 2013 to October 2013. There are about 300 thousand posts in our data set for the experiment. After excluding data such as adverting or promoted tweets, we selected 149 thousand tweets for analysis. The number of tweets reaches its maximum level on the broadcasting day and increases rapidly around the broadcasting time. This result is stems from the characteristics of the public channel, which broadcasts the program at the predetermined time. From our analysis, we find that count-based features such as the number of tweets or retweets have a low correlation with TV ratings. This result implies that a simple tweet rate does not reflect the satisfaction or response to the TV programs. Content-based features extracted from the content of tweets have a relatively high correlation with TV ratings. Further, some emoticons or newly coined words that are not tagged in the morpheme extraction process have a strong relationship with TV ratings. We find that there is a time-dependency in the correlation of features between the before and after broadcasting time. Since the TV program is broadcast at the predetermined time regularly, users post tweets expressing their expectation for the program or disappointment over not being able to watch the program. The highly correlated features before the broadcast are different from the features after broadcasting. This result explains that the relevance of words with TV programs can change according to the time of the tweets. Among the 336 words that fulfill the minimum requirements for candidate features, 145 words have the highest correlation before the broadcasting time, whereas 68 words reach the highest correlation after broadcasting. Interestingly, some words that express the impossibility of watching the program show a high relevance, despite containing a negative meaning. Understanding the time-dependency of features can be helpful in improving the accuracy of TV ratings measurement. This research contributes a basis to estimate the response to or satisfaction with the broadcasted programs using the time dependency of words in Twitter chatter. More research is needed to refine the methodology for predicting or measuring TV ratings.

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.

Design of Client-Server Model For Effective Processing and Utilization of Bigdata (빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계)

  • Park, Dae Seo;Kim, Hwa Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.109-122
    • /
    • 2016
  • Recently, big data analysis has developed into a field of interest to individuals and non-experts as well as companies and professionals. Accordingly, it is utilized for marketing and social problem solving by analyzing the data currently opened or collected directly. In Korea, various companies and individuals are challenging big data analysis, but it is difficult from the initial stage of analysis due to limitation of big data disclosure and collection difficulties. Nowadays, the system improvement for big data activation and big data disclosure services are variously carried out in Korea and abroad, and services for opening public data such as domestic government 3.0 (data.go.kr) are mainly implemented. In addition to the efforts made by the government, services that share data held by corporations or individuals are running, but it is difficult to find useful data because of the lack of shared data. In addition, big data traffic problems can occur because it is necessary to download and examine the entire data in order to grasp the attributes and simple information about the shared data. Therefore, We need for a new system for big data processing and utilization. First, big data pre-analysis technology is needed as a way to solve big data sharing problem. Pre-analysis is a concept proposed in this paper in order to solve the problem of sharing big data, and it means to provide users with the results generated by pre-analyzing the data in advance. Through preliminary analysis, it is possible to improve the usability of big data by providing information that can grasp the properties and characteristics of big data when the data user searches for big data. In addition, by sharing the summary data or sample data generated through the pre-analysis, it is possible to solve the security problem that may occur when the original data is disclosed, thereby enabling the big data sharing between the data provider and the data user. Second, it is necessary to quickly generate appropriate preprocessing results according to the level of disclosure or network status of raw data and to provide the results to users through big data distribution processing using spark. Third, in order to solve the problem of big traffic, the system monitors the traffic of the network in real time. When preprocessing the data requested by the user, preprocessing to a size available in the current network and transmitting it to the user is required so that no big traffic occurs. In this paper, we present various data sizes according to the level of disclosure through pre - analysis. This method is expected to show a low traffic volume when compared with the conventional method of sharing only raw data in a large number of systems. In this paper, we describe how to solve problems that occur when big data is released and used, and to help facilitate sharing and analysis. The client-server model uses SPARK for fast analysis and processing of user requests. Server Agent and a Client Agent, each of which is deployed on the Server and Client side. The Server Agent is a necessary agent for the data provider and performs preliminary analysis of big data to generate Data Descriptor with information of Sample Data, Summary Data, and Raw Data. In addition, it performs fast and efficient big data preprocessing through big data distribution processing and continuously monitors network traffic. The Client Agent is an agent placed on the data user side. It can search the big data through the Data Descriptor which is the result of the pre-analysis and can quickly search the data. The desired data can be requested from the server to download the big data according to the level of disclosure. It separates the Server Agent and the client agent when the data provider publishes the data for data to be used by the user. In particular, we focus on the Big Data Sharing, Distributed Big Data Processing, Big Traffic problem, and construct the detailed module of the client - server model and present the design method of each module. The system designed on the basis of the proposed model, the user who acquires the data analyzes the data in the desired direction or preprocesses the new data. By analyzing the newly processed data through the server agent, the data user changes its role as the data provider. The data provider can also obtain useful statistical information from the Data Descriptor of the data it discloses and become a data user to perform new analysis using the sample data. In this way, raw data is processed and processed big data is utilized by the user, thereby forming a natural shared environment. The role of data provider and data user is not distinguished, and provides an ideal shared service that enables everyone to be a provider and a user. The client-server model solves the problem of sharing big data and provides a free sharing environment to securely big data disclosure and provides an ideal shared service to easily find big data.

Color-related Query Processing for Intelligent E-Commerce Search (지능형 검색엔진을 위한 색상 질의 처리 방안)

  • Hong, Jung A;Koo, Kyo Jung;Cha, Ji Won;Seo, Ah Jeong;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.109-125
    • /
    • 2019
  • As interest on intelligent search engines increases, various studies have been conducted to extract and utilize the features related to products intelligencely. In particular, when users search for goods in e-commerce search engines, the 'color' of a product is an important feature that describes the product. Therefore, it is necessary to deal with the synonyms of color terms in order to produce accurate results to user's color-related queries. Previous studies have suggested dictionary-based approach to process synonyms for color features. However, the dictionary-based approach has a limitation that it cannot handle unregistered color-related terms in user queries. In order to overcome the limitation of the conventional methods, this research proposes a model which extracts RGB values from an internet search engine in real time, and outputs similar color names based on designated color information. At first, a color term dictionary was constructed which includes color names and R, G, B values of each color from Korean color standard digital palette program and the Wikipedia color list for the basic color search. The dictionary has been made more robust by adding 138 color names converted from English color names to foreign words in Korean, and with corresponding RGB values. Therefore, the fininal color dictionary includes a total of 671 color names and corresponding RGB values. The method proposed in this research starts by searching for a specific color which a user searched for. Then, the presence of the searched color in the built-in color dictionary is checked. If there exists the color in the dictionary, the RGB values of the color in the dictioanry are used as reference values of the retrieved color. If the searched color does not exist in the dictionary, the top-5 Google image search results of the searched color are crawled and average RGB values are extracted in certain middle area of each image. To extract the RGB values in images, a variety of different ways was attempted since there are limits to simply obtain the average of the RGB values of the center area of images. As a result, clustering RGB values in image's certain area and making average value of the cluster with the highest density as the reference values showed the best performance. Based on the reference RGB values of the searched color, the RGB values of all the colors in the color dictionary constructed aforetime are compared. Then a color list is created with colors within the range of ${\pm}50$ for each R value, G value, and B value. Finally, using the Euclidean distance between the above results and the reference RGB values of the searched color, the color with the highest similarity from up to five colors becomes the final outcome. In order to evaluate the usefulness of the proposed method, we performed an experiment. In the experiment, 300 color names and corresponding color RGB values by the questionnaires were obtained. They are used to compare the RGB values obtained from four different methods including the proposed method. The average euclidean distance of CIE-Lab using our method was about 13.85, which showed a relatively low distance compared to 3088 for the case using synonym dictionary only and 30.38 for the case using the dictionary with Korean synonym website WordNet. The case which didn't use clustering method of the proposed method showed 13.88 of average euclidean distance, which implies the DBSCAN clustering of the proposed method can reduce the Euclidean distance. This research suggests a new color synonym processing method based on RGB values that combines the dictionary method with the real time synonym processing method for new color names. This method enables to get rid of the limit of the dictionary-based approach which is a conventional synonym processing method. This research can contribute to improve the intelligence of e-commerce search systems especially on the color searching feature.

A Study on Fast Iris Detection for Iris Recognition in Mobile Phone (휴대폰에서의 홍채인식을 위한 고속 홍채검출에 관한 연구)

  • Park Hyun-Ae;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.19-29
    • /
    • 2006
  • As the security of personal information is becoming more important in mobile phones, we are starting to apply iris recognition technology to these devices. In conventional iris recognition, magnified iris images are required. For that, it has been necessary to use large magnified zoom & focus lens camera to capture images, but due to the requirement about low size and cost of mobile phones, the zoom & focus lens are difficult to be used. However, with rapid developments and multimedia convergence trends in mobile phones, more and more companies have built mega-pixel cameras into their mobile phones. These devices make it possible to capture a magnified iris image without zoom & focus lens. Although facial images are captured far away from the user using a mega-pixel camera, the captured iris region possesses sufficient pixel information for iris recognition. However, in this case, the eye region should be detected for accurate iris recognition in facial images. So, we propose a new fast iris detection method, which is appropriate for mobile phones based on corneal specular reflection. To detect specular reflection robustly, we propose the theoretical background of estimating the size and brightness of specular reflection based on eye, camera and illuminator models. In addition, we use the successive On/Off scheme of the illuminator to detect the optical/motion blurring and sunlight effect on input image. Experimental results show that total processing time(detecting iris region) is on average 65ms on a Samsung SCH-S2300 (with 150MHz ARM 9 CPU) mobile phone. The rate of correct iris detection is 99% (about indoor images) and 98.5% (about outdoor images).

Development and Evaluation of Traffic Conflict Criteria at an intersection (교차로 교통상충기준 개발 및 평가에 관한 연구)

  • 하태준;박형규;박제진;박찬모
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2002
  • For many rears, traffic accident statistics are the most direct measure of safety for a signalized intersection. However it takes more than 2 or 3 yearn to collect certain accident data for adequate sample sizes. And the accident data itself is unreliable because of the difference between accident data recorded and accident that is actually occurred. Therefore, it is rather difficult to evaluate safety for a intersection by using accident data. For these reasons, traffic conflict technique(TCT) was developed as a buick and accurate counter-measure of safety for a intersection. However, the collected conflict data is not always reliable because there is absence of clear criteria for conflict. This study developed objective and accurate conflict criteria, which is shown below based on traffic engineering theory. Frist, the rear-end conflict is regarded, when the following vehicle takes evasive maneuver against the first vehicle within a certain distance, according to car-following theory. Second, lane-change conflict is regarded when the following vehicle takes evasive maneuver against first vehicle which is changing its lane within the minimum stopping distance of the following vehicle. Third, cross and opposing-left turn conflicts are regarded when the vehicle which receives green sign takes evasive maneuver against the vehicle which lost its right-of-way crossing a intersection. As a result of correlation analysis between conflict and accident, it is verified that the suggested conflict criteria in this study ave applicable. And it is proven that estimating safety evaluation for a intersection with conflict data is possible, according to the regression analysis preformed between accident and conflict, EPDO accident and conflict. Adopting the conflict criteria suggested in this study would be both quick and accurate method for diagnosing safety and operational deficiencies and for evaluation improvements at intersections. Further research is required to refine the suggested conflict criteria to extend its application. In addition, it is necessary to develope other types of conflict criteria, not included in this study, in later study.

Analyzing the Issue Life Cycle by Mapping Inter-Period Issues (기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.25-41
    • /
    • 2014
  • Recently, the number of social media users has increased rapidly because of the prevalence of smart devices. As a result, the amount of real-time data has been increasing exponentially, which, in turn, is generating more interest in using such data to create added value. For instance, several attempts are being made to analyze the relevant search keywords that are frequently used on new portal sites and the words that are regularly mentioned on various social media in order to identify social issues. The technique of "topic analysis" is employed in order to identify topics and themes from a large amount of text documents. As one of the most prevalent applications of topic analysis, the technique of issue tracking investigates changes in the social issues that are identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has two limitations. First, when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. This creates practical limitations in the form of significant time and cost burdens. Therefore, this traditional approach is difficult to apply in most applications that need to perform an analysis on the additional period. Second, the issue is not only generated and terminated constantly, but also one issue can sometimes be distributed into several issues or multiple issues can be integrated into one single issue. In other words, each issue is characterized by a life cycle that consists of the stages of creation, transition (merging and segmentation), and termination. The existing issue tracking methods do not address the connection and effect relationship between these issues. The purpose of this study is to overcome the two limitations of the existing issue tracking method, one being the limitation regarding the analysis method and the other being the limitation involving the lack of consideration of the changeability of the issues. Let us assume that we perform multiple topic analysis for each multiple period. Then it is essential to map issues of different periods in order to trace trend of issues. However, it is not easy to discover connection between issues of different periods because the issues derived for each period mutually contain heterogeneity. In this study, to overcome these limitations without having to analyze the entire period's documents simultaneously, the analysis can be performed independently for each period. In addition, we performed issue mapping to link the identified issues of each period. An integrated approach on each details period was presented, and the issue flow of the entire integrated period was depicted in this study. Thus, as the entire process of the issue life cycle, including the stages of creation, transition (merging and segmentation), and extinction, is identified and examined systematically, the changeability of the issues was analyzed in this study. The proposed methodology is highly efficient in terms of time and cost, as it sufficiently considered the changeability of the issues. Further, the results of this study can be used to adapt the methodology to a practical situation. By applying the proposed methodology to actual Internet news, the potential practical applications of the proposed methodology are analyzed. Consequently, the proposed methodology was able to extend the period of the analysis and it could follow the course of progress of each issue's life cycle. Further, this methodology can facilitate a clearer understanding of complex social phenomena using topic analysis.

Adaptive Data Hiding Techniques for Secure Communication of Images (영상 보안통신을 위한 적응적인 데이터 은닉 기술)

  • 서영호;김수민;김동욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.664-672
    • /
    • 2004
  • Widespread popularity of wireless data communication devices, coupled with the availability of higher bandwidths, has led to an increased user demand for content-rich media such as images and videos. Since such content often tends to be private, sensitive, or paid for, there exists a requirement for securing such communication. However, solutions that rely only on traditional compute-intensive security mechanisms are unsuitable for resource-constrained wireless and embedded devices. In this paper, we propose a selective partial image encryption scheme for image data hiding , which enables highly efficient secure communication of image data to and from resource constrained wireless devices. The encryption scheme is invoked during the image compression process, with the encryption being performed between the quantizer and the entropy coder stages. Three data selection schemes are proposed: subband selection, data bit selection and random selection. We show that these schemes make secure communication of images feasible for constrained embed-ded devices. In addition we demonstrate how these schemes can be dynamically configured to trade-off the amount of ded devices. In addition we demonstrate how these schemes can be dynamically configured to trade-off the amount of data hiding achieved with the computation requirements imposed on the wireless devices. Experiments conducted on over 500 test images reveal that, by using our techniques, the fraction of data to be encrypted with our scheme varies between 0.0244% and 0.39% of the original image size. The peak signal to noise ratios (PSNR) of the encrypted image were observed to vary between about 9.5㏈ to 7.5㏈. In addition, visual test indicate that our schemes are capable of providing a high degree of data hiding with much lower computational costs.

Dietary Habits and Climacteric Symptoms according to the Level of Food Supplement Use of Middle-aged Women (중년 여성의 식이보충제 섭취 수준에 따른 식습관 및 갱년기 증상에 관한 연구)

  • Kim, Mi Jeong;Lee, Kyung-Hea
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1054-1064
    • /
    • 2013
  • The purpose of this study was to examine the question of whether there is any difference in dietary habits, climacteric symptoms, and general health characteristics of middle-aged women according to food supplements (FS) use. A total of 745 midlife females participated in a face-to-face interview conducted by qualified interviewers, which guaranteed a higher quality of data collection. Three levels of FS use were defined: None, Single, and Multi for 0, 1, and 2 or more types of FS use, respectively. None, Single, and Multi accounted for 33.56%, 33.29%, and 33.15% of total subjects, respectively. FS users (Single and Multi) exerted more interest in FS and were more likely to believe that FS is helpful for health promotion and amelioration of climacteric symptoms than None (P<0.0001). Self-perceived health status of Multi was lower than that of None, but not different from Single (P<0.05). Factor analysis extracted three factors for dietary habits: regularity, variety and moderation, and four factors for climacteric symptoms: emotional, physical, psycho-somatic, and hot flash. The factor scores for dietary variety as well as emotional, psycho-somatic, and hot flash symptoms were higher for FS user than for None (P<0.01). Single reported more frequent family meals compared to None. Findings of the present study elucidated potential links between the level of FS use, dietary habits, and climacteric symptoms of middle-aged women, suggesting a possible scenario: the greater the climacteric symptoms a woman perceives, the more likely the woman will adopt FS use, the greater the efforts toward dietary improvement, such as dietary variety. Based on that, in this study, more peri-menopausal women belonged to Single and Multi; further investigation on the association between FS use, dietary quality, and climacteric symptoms in conjunction with menopausal status may be needed.