• 제목/요약/키워드: 사용자 관심

Search Result 2,456, Processing Time 0.028 seconds

Examination of Factors Affecting the Expansion of Virtual Consumption in the Game Virtual World: Analysis of Differences by Demographic Characteristics and Virtual Product Type Groups (게임 가상세계에서의 가상소비 확산 영향요인 고찰: 인구통계학적 특성과 가상상품 유형 그룹별 차이점 분석)

  • Ae Ri Lee;Han-Tao Chen;Kyung Kyu Kim
    • Knowledge Management Research
    • /
    • v.25 no.3
    • /
    • pp.279-299
    • /
    • 2024
  • The socio-cultural and economic activities of users in virtual worlds are increasing, and virtual consumption of purchasing virtual products is expanding. The future growth potential of this virtual consumption market is very high and has the potential to change the existing traditional consumption ecosystem. This study was interested in the phenomenon of virtual consumption in the most rapidly growing gaming virtual world, and based on the consumption values theory and the concept of self-improvement, major factors promoting virtual consumption in the gaming virtual world were derived. Then, the influence of factors on intention to continue virtual consumption was verified. In particular, this study compared and analyzed whether the influence of factors varies depending on demographic groups (age group and gender) and types of virtual products mainly consumed. This study collected data from users who actually experienced virtual consumption in the game virtual world and empirically analyzed the influence of factors promoting virtual consumption and differences by group. Accordingly, it provides implications for knowledge management in terms of establishing a service development strategy in response to the virtual consumption phenomenon in virtual worlds, which will expand further in the future, and revitalizing the convergence economic ecosystem between the virtual and reality economy.

Assessment of Quantitative Analysis Methods for Lung F-18-Fluorodeoxyglucose PET (폐 종양 FDG PET 영상의 다양한 추적자 역학 분석 방법 개발과 유용성 고찰)

  • Kim, Joon-Young;Choi, Yong;Choi, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Kim, Yong-Jin;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.332-343
    • /
    • 1998
  • Purpose: The purpose of this study was to assess the diagnostic accuracy of various quantitation methods using F-18-fluorodeoxyglucose (FDG) in patients with malignant or benign lung lesion. Materials and Methods: 22 patients (13 malignant including 5 bronchoalverolar cell cancer; 9 benign lesions including 1 hamartoma and 8 active inflammation) were studied after overnight fasting. We performed dynamic PET imaging for 56 min after injection of 370 MBq (10 mCi) of FDG. Standardized uptake values normalized to patient's body weight and plasma glucose concentration (SUVglu) were calculated. The uptake rate constant of FDG and glucose metabolic rate were quantified using Patlak graphical analysis (Kpat and MRpat), three compartment-five parameter model (K5p, MR5p), and six parameter model taking into account heterogeneity of tumor tissue (K6p, MR6p). Areas under receiver operating characteristic curves (ROC) were calculated for each method. Results: There was no significant difference of rate constant or glucose metabolic rate measured by various quantitation methods between malignant and benign lesions. The area under ROC curve were 0.73 for SUVglu, 0.66 for Kpat, 0.77 for MRpat, 0.71 for K5p, 0.73 for MR5p, 0.70 for K6p, and 0.78 for MR6p. No significant difference of area under the ROC curve between these methods was observed except the area between Kpat vs. MRpat (p<0.05). Conclusion: Quantitative methods did not improve diagnostic accuracy in comparison with nonkinetic methods. However, the clinical utility of these methods needs to be evaluated further in patients with low pretest likelihood of active inflammation or bronchoalveolar cell carcinoma.

  • PDF

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF

A Comparative Study on the Aesthetic Aspect of Design Preferred Between Countries Centering Around the Analysis on the Aesthetic Aspect of Mobile Phone Preferred by Korean and Chinese Consumers - (국가 간 선호 디자인의 심미성요소 비교연구 - 한.중 소비자 선호휴대폰의 심미성요소 분석을 중심으로 -)

  • Jeong Su-Kyoung;Hong Jung-Pyo
    • Science of Emotion and Sensibility
    • /
    • v.9 no.1
    • /
    • pp.49-61
    • /
    • 2006
  • The present mobile phone industry has significant effect on the domestic economy and has taken root as the core item that has the responsibility to lead the Korean economy for a considerable period of time. As the mobile phone market becomes gigantic, the mobile phone is being used by people in broader age bracket, and functions or designs preferred by people of various age are getting more diverse. Like that, as the mobile phone has greater effect on and meaning in our daily lives, consumers of mobile phone have growing expectation of the mobile phone Now, the core function of voice communication via the mobile phone is not a great concern to consumers. But the function, such as more convenient and friendly information input and output, processing and storage, and the design, which is more sophisticated and optimized for the user environment, are being demanded, not just the simple voice communication. And as the modern design is getting more similar to the objects of traditional high art consumed by consumers every day, the aesthetic aspect of design can play an important role, as the factor that differentiates the product, in creating new value which forms the spiritual and emotional value of human beings to improve the quality of living, and in addition, the willingness of consumers to buy is determined by the design that they prefer the most. Like that, a new design of mobile phone based on a new dimension and preferred by the consumers the most is urgently required to be developed by shedding light on the factors related to the preference of consumers on the basis of the analysis on the aesthetic aspect, which can be said to be the most critical factor in the design process. Therefore, this study aims to identity the common preference and different factors of aesthetic aspects through the analysis on the aesthetic aspects of the mobile phone preferred by users among countries, and figure out the formative artistic factors of aesthetic aspects that are considered to be important, in order to propose the guideline on the aesthetic aspect of mobile phone that can be applied to the design of mobile phone practically.

  • PDF

Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques (소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스)

  • Cho, In-Dong;Kim, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.127-138
    • /
    • 2011
  • The core service of most research portal sites is providing relevant research papers to various researchers that match their research interests. This kind of service may only be effective and easy to use when a user can provide correct and concrete information about a paper such as the title, authors, and keywords. However, unfortunately, most users of this service are not acquainted with concrete bibliographic information. It implies that most users inevitably experience repeated trial and error attempts of keyword-based search. Especially, retrieving a relevant research paper is more difficult when a user is novice in the research domain and does not know appropriate keywords. In this case, a user should perform iterative searches as follows : i) perform an initial search with an arbitrary keyword, ii) acquire related keywords from the retrieved papers, and iii) perform another search again with the acquired keywords. This usage pattern implies that the level of service quality and user satisfaction of a portal site are strongly affected by the level of keyword management and searching mechanism. To overcome this kind of inefficiency, some leading research portal sites adopt the association rule mining-based keyword recommendation service that is similar to the product recommendation of online shopping malls. However, keyword recommendation only based on association analysis has limitation that it can show only a simple and direct relationship between two keywords. In other words, the association analysis itself is unable to present the complex relationships among many keywords in some adjacent research areas. To overcome this limitation, we propose the hybrid approach for establishing association network among keywords used in research papers. The keyword association network can be established by the following phases : i) a set of keywords specified in a certain paper are regarded as co-purchased items, ii) perform association analysis for the keywords and extract frequent patterns of keywords that satisfy predefined thresholds of confidence, support, and lift, and iii) schematize the frequent keyword patterns as a network to show the core keywords of each research area and connecting keywords among two or more research areas. To estimate the practical application of our approach, we performed a simple experiment with 600 keywords. The keywords are extracted from 131 research papers published in five prominent Korean journals in 2009. In the experiment, we used the SAS Enterprise Miner for association analysis and the R software for social network analysis. As the final outcome, we presented a network diagram and a cluster dendrogram for the keyword association network. We summarized the results in Section 4 of this paper. The main contribution of our proposed approach can be found in the following aspects : i) the keyword network can provide an initial roadmap of a research area to researchers who are novice in the domain, ii) a researcher can grasp the distribution of many keywords neighboring to a certain keyword, and iii) researchers can get some idea for converging different research areas by observing connecting keywords in the keyword association network. Further studies should include the following. First, the current version of our approach does not implement a standard meta-dictionary. For practical use, homonyms, synonyms, and multilingual problems should be resolved with a standard meta-dictionary. Additionally, more clear guidelines for clustering research areas and defining core and connecting keywords should be provided. Finally, intensive experiments not only on Korean research papers but also on international papers should be performed in further studies.

A Hierarchical Grid Alignment Algorithm for Microarray Image Analysis (마이크로어레이 이미지 분석을 위한 계층적 그리드 정렬 알고리즘)

  • Chun Bong-Kyung;Jin Hee-Jeong;Lee Pyung-Jun;Cho Hwan-Gue
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.2
    • /
    • pp.143-153
    • /
    • 2006
  • Microarray which enables us to obtain hundreds and thousands of expression of gene or genotype at once is an epoch-making technology in comparative analysis of genes. First of all, we have to measure the intensity of each gene in an microarray image from the experiment to gain the expression level of each gene. But it is difficult to analyze the microarray image in manual because it has a lot of genes. Meta-gridding method and various auto-gridding methods have been proposed for this, but thew still have some problems. For example, meta-gridding requires manual-work due to some variations in spite of experiment in same microarray, and auto-gridding nay not carried out fully or correctly when an image has a lot of noises or is lowly expressed. In this article, we propose Hierarchical Grid Alignment algorithm for new methodology combining meta-gridding method with auto-gridding method. In our methodology, we necd a meta-grid as an input, and then align it with the microarray image automatically. Experimental results show that the proposed method serves more robust and reliable gridding result than the previous methods. It is also possible for user to do more reliable batch analysis by using our algorithm.

Learning Material Bookmarking Service based on Collective Intelligence (집단지성 기반 학습자료 북마킹 서비스 시스템)

  • Jang, Jincheul;Jung, Sukhwan;Lee, Seulki;Jung, Chihoon;Yoon, Wan Chul;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.179-192
    • /
    • 2014
  • Keeping in line with the recent changes in the information technology environment, the online learning environment that supports multiple users' participation such as MOOC (Massive Open Online Courses) has become important. One of the largest professional associations in Information Technology, IEEE Computer Society, announced that "Supporting New Learning Styles" is a crucial trend in 2014. Popular MOOC services, CourseRa and edX, have continued to build active learning environment with a large number of lectures accessible anywhere using smart devices, and have been used by an increasing number of users. In addition, collaborative web services (e.g., blogs and Wikipedia) also support the creation of various user-uploaded learning materials, resulting in a vast amount of new lectures and learning materials being created every day in the online space. However, it is difficult for an online educational system to keep a learner' motivation as learning occurs remotely, with limited capability to share knowledge among the learners. Thus, it is essential to understand which materials are needed for each learner and how to motivate learners to actively participate in online learning system. To overcome these issues, leveraging the constructivism theory and collective intelligence, we have developed a social bookmarking system called WeStudy, which supports learning material sharing among the users and provides personalized learning material recommendations. Constructivism theory argues that knowledge is being constructed while learners interact with the world. Collective intelligence can be separated into two types: (1) collaborative collective intelligence, which can be built on the basis of direct collaboration among the participants (e.g., Wikipedia), and (2) integrative collective intelligence, which produces new forms of knowledge by combining independent and distributed information through highly advanced technologies and algorithms (e.g., Google PageRank, Recommender systems). Recommender system, one of the examples of integrative collective intelligence, is to utilize online activities of the users and recommend what users may be interested in. Our system included both collaborative collective intelligence functions and integrative collective intelligence functions. We analyzed well-known Web services based on collective intelligence such as Wikipedia, Slideshare, and Videolectures to identify main design factors that support collective intelligence. Based on this analysis, in addition to sharing online resources through social bookmarking, we selected three essential functions for our system: 1) multimodal visualization of learning materials through two forms (e.g., list and graph), 2) personalized recommendation of learning materials, and 3) explicit designation of learners of their interest. After developing web-based WeStudy system, we conducted usability testing through the heuristic evaluation method that included seven heuristic indices: features and functionality, cognitive page, navigation, search and filtering, control and feedback, forms, context and text. We recruited 10 experts who majored in Human Computer Interaction and worked in the same field, and requested both quantitative and qualitative evaluation of the system. The evaluation results show that, relative to the other functions evaluated, the list/graph page produced higher scores on all indices except for contexts & text. In case of contexts & text, learning material page produced the best score, compared with the other functions. In general, the explicit designation of learners of their interests, one of the distinctive functions, received lower scores on all usability indices because of its unfamiliar functionality to the users. In summary, the evaluation results show that our system has achieved high usability with good performance with some minor issues, which need to be fully addressed before the public release of the system to large-scale users. The study findings provide practical guidelines for the design and development of various systems that utilize collective intelligence.

A MVC Framework for Visualizing Text Data (텍스트 데이터 시각화를 위한 MVC 프레임워크)

  • Choi, Kwang Sun;Jeong, Kyo Sung;Kim, Soo Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.39-58
    • /
    • 2014
  • As the importance of big data and related technologies continues to grow in the industry, it has become highlighted to visualize results of processing and analyzing big data. Visualization of data delivers people effectiveness and clarity for understanding the result of analyzing. By the way, visualization has a role as the GUI (Graphical User Interface) that supports communications between people and analysis systems. Usually to make development and maintenance easier, these GUI parts should be loosely coupled from the parts of processing and analyzing data. And also to implement a loosely coupled architecture, it is necessary to adopt design patterns such as MVC (Model-View-Controller) which is designed for minimizing coupling between UI part and data processing part. On the other hand, big data can be classified as structured data and unstructured data. The visualization of structured data is relatively easy to unstructured data. For all that, as it has been spread out that the people utilize and analyze unstructured data, they usually develop the visualization system only for each project to overcome the limitation traditional visualization system for structured data. Furthermore, for text data which covers a huge part of unstructured data, visualization of data is more difficult. It results from the complexity of technology for analyzing text data as like linguistic analysis, text mining, social network analysis, and so on. And also those technologies are not standardized. This situation makes it more difficult to reuse the visualization system of a project to other projects. We assume that the reason is lack of commonality design of visualization system considering to expanse it to other system. In our research, we suggest a common information model for visualizing text data and propose a comprehensive and reusable framework, TexVizu, for visualizing text data. At first, we survey representative researches in text visualization era. And also we identify common elements for text visualization and common patterns among various cases of its. And then we review and analyze elements and patterns with three different viewpoints as structural viewpoint, interactive viewpoint, and semantic viewpoint. And then we design an integrated model of text data which represent elements for visualization. The structural viewpoint is for identifying structural element from various text documents as like title, author, body, and so on. The interactive viewpoint is for identifying the types of relations and interactions between text documents as like post, comment, reply and so on. The semantic viewpoint is for identifying semantic elements which extracted from analyzing text data linguistically and are represented as tags for classifying types of entity as like people, place or location, time, event and so on. After then we extract and choose common requirements for visualizing text data. The requirements are categorized as four types which are structure information, content information, relation information, trend information. Each type of requirements comprised with required visualization techniques, data and goal (what to know). These requirements are common and key requirement for design a framework which keep that a visualization system are loosely coupled from data processing or analyzing system. Finally we designed a common text visualization framework, TexVizu which is reusable and expansible for various visualization projects by collaborating with various Text Data Loader and Analytical Text Data Visualizer via common interfaces as like ITextDataLoader and IATDProvider. And also TexVisu is comprised with Analytical Text Data Model, Analytical Text Data Storage and Analytical Text Data Controller. In this framework, external components are the specifications of required interfaces for collaborating with this framework. As an experiment, we also adopt this framework into two text visualization systems as like a social opinion mining system and an online news analysis system.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.