• 제목/요약/키워드: 사영과 치환불변 벡터

검색결과 2건 처리시간 0.014초

PPIV 인식기반 2D 호모그래피와 LM방법을 이용한 카메라 외부인수 산출 (Camera Extrinsic Parameter Estimation using 2D Homography and LM Method based on PPIV Recognition)

  • 차정희;전영민
    • 전자공학회논문지SC
    • /
    • 제43권2호
    • /
    • pp.11-19
    • /
    • 2006
  • 본 논문에서는 사영과 치환불변 점 특징을 기반으로 카메라의 외부인수를 산출하는 방법을 제안한다. 기존 연구에서의 특징 정보들은 카메라의 뷰 포인트에 따라 변화하기 때문에 대응점 산출이 어렵다. 따라서 본 논문에서는 카메라 위치에 무관한 불변 점 특징을 추출하고 시간 복잡도 감소와 정확한 대응점 산출을 위해 유사도 평가함수와 Graham 탐색 방법을 이용한 새로운 정합방법을 제안한다. 또한 카메라 외부인수 산출단계에서는 LM 알고리즘의 수렴도를 향상시키기 위해 2단계 카메라 동작인수 산출방법을 제안한다. 실험에서는 다양한 실내영상을 이용하여 기존방법과 비교, 분석함으로써 제안한 알고리즘의 우수성을 입증하였다.

기하학적 불변벡터기반 랜드마크 인식방법 (Landmark Recognition Method based on Geometric Invariant Vectors)

  • 차정희
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.173-182
    • /
    • 2005
  • 본 논문에서는 항해 시 위치인식에 사용하기 위하여 카메라의 뷰포인트에 무관한 랜드마크를 인식하는 방법을 제안한다. 기존연구에서 사용된 특징들은 카메라의 뷰포인트에 따라 변하고 이에따른 정보 양의 증가로 위치확인을 위한 시각적인 랜드마크의 추출이 어렵다. 본 논문에서 제안된 방법은 특징 추출단계, 학습과 인식단계, 정합단계의 삼단계로 구성된다. 특징 추출단계에서는 영상의 관심영역을 설정, 이 영역 안에서 코너점을 추출하는데, 추출 시 작은 고유값의 통계적 분석을 통해 보다 정확하고 잡음에 강한 특징을 추출하는 방법을 제안한다. 학습 및 인식단계에서는 5개의 특징점으로 구성된 특징모델이 뷰포인트에 무관한 특징점인지를 검사하여 강건 특징모델을 구성한다. 정합단계에서는 시간 복잡도를 줄이고 정확한 대응점을 산출하기 위하여 유사도 평가함수와 Graham 탐색방법을 이용한 정합 방법을 제안한다. 실험에서는 다양한 실내영상을 가지고 제안한 방법과 기존방법을 비교 분석함으로써 제안한 방법의 우수함을 보였다.

  • PDF