Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 10 Issue 3 Serial No. 35
- /
- Pages.173-182
- /
- 2005
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
Landmark Recognition Method based on Geometric Invariant Vectors
기하학적 불변벡터기반 랜드마크 인식방법
Abstract
In this paper, we propose a landmark recognition method which is irrelevant to the camera viewpoint on the navigation for localization. Features in previous research is variable to camera viewpoint, therefore due to the wealth of information, extraction of visual landmarks for positioning is not an easy task. The proposed method in this paper, has the three following stages; first, extraction of features, second, learning and recognition, third, matching. In the feature extraction stage, we set the interest areas of the image. where we extract the corner points. And then, we extract features more accurate and resistant to noise through statistical analysis of a small eigenvalue. In learning and recognition stage, we form robust feature models by testing whether the feature model consisted of five corner points is an invariant feature irrelevant to viewpoint. In the matching stage, we reduce time complexity and find correspondence accurately by matching method using similarity evaluation function and Graham search method. In the experiments, we compare and analyse the proposed method with existing methods by using various indoor images to demonstrate the superiority of the proposed methods.
본 논문에서는 항해 시 위치인식에 사용하기 위하여 카메라의 뷰포인트에 무관한 랜드마크를 인식하는 방법을 제안한다. 기존연구에서 사용된 특징들은 카메라의 뷰포인트에 따라 변하고 이에따른 정보 양의 증가로 위치확인을 위한 시각적인 랜드마크의 추출이 어렵다. 본 논문에서 제안된 방법은 특징 추출단계, 학습과 인식단계, 정합단계의 삼단계로 구성된다. 특징 추출단계에서는 영상의 관심영역을 설정, 이 영역 안에서 코너점을 추출하는데, 추출 시 작은 고유값의 통계적 분석을 통해 보다 정확하고 잡음에 강한 특징을 추출하는 방법을 제안한다. 학습 및 인식단계에서는 5개의 특징점으로 구성된 특징모델이 뷰포인트에 무관한 특징점인지를 검사하여 강건 특징모델을 구성한다. 정합단계에서는 시간 복잡도를 줄이고 정확한 대응점을 산출하기 위하여 유사도 평가함수와 Graham 탐색방법을 이용한 정합 방법을 제안한다. 실험에서는 다양한 실내영상을 가지고 제안한 방법과 기존방법을 비교 분석함으로써 제안한 방법의 우수함을 보였다.
Keywords
- Projective and Permutation Invariant Vectors;
- Feature Model;
- Cross Ratio;
- Similarity Function;
- Graham Search Method
- 사영과 치환 불변벡터;
- 특징모델;
- 복비;
- 유사도 함수;
- Graham 탐색 방법;