• Title/Summary/Keyword: 사면파괴 지역

Search Result 92, Processing Time 0.028 seconds

Analysis of Regional Geologic hazards using GIS (지질재해 분석을 위한 GIS 응용연구)

  • 김윤종;김원영;유일현
    • Spatial Information Research
    • /
    • v.1 no.1
    • /
    • pp.89-94
    • /
    • 1993
  • GIS was appl ied for analysis of the potfnt ial degree of regional geologic hazard, expecially landslide, in the suburb of Seoul city. Potential elements causing a landslide are geology, slope geometry, groundwater, soil property, rainfall and vegetation etc. These factors were incorporated through GIS in order to predict the potential hazards, and to produce a regional geologic hazard map in the study area, For this study, ARC/INFO and ERDAS systems were used in SUN4-390 workstation.

  • PDF

3-D Slope Stability Analysis on Influence of Groundwater Level Changes in Oksan Landslide Area (지하수위 변화에 따른 옥산 산사태 지역의 3차원 사면안정성 해석)

  • Seo, Yong-Seok;Kim, Sung-Kwon;Lee, Kyoung-Mi
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In the study, we carried out a 3-D analysis to assess the influence of groundwater level changes on the slope stability, conducting a series of back-numerical analysis to delineate the critical line of the shear strength of the failure surface of a landslide, and a laboratory test to determine the geo-mechanical properties of soil samples. The analysis result shows that the shear strength determined by the laboratory test was distributed below the critical line of shear strength estimated by back-analysis. Differences between driving and resisting force were also analyzed in groundwater conditions of dry and saturation. It appeared that the stress gets greater towards the slope center of the landslide, and the debris mass moves downwards. According to the analysis, the factor of safety becomes 1 with the rise of foundwater level up to -0.85 m from the slope surface, while the slope tends to stay stable during dry seasons.

A Study on the Effect of Improvement Boundary of Vertical Drain Method by Finite Element Analysis (유한요소해석을 이용한 연직배수재의 타설범위에 따른 개량효과에 관한 연구)

  • Chang, Y.C.;Kim, J.H.;Lee, J.S.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • Soft foundation is extensively distributed in coastal areas including our local regions. Embankment load on such soft foundation causes displacement due to lack of base ground supports. Long-term consolidation can result in settlement and destruction of shear failure and structure. Therefore, a variety of vertical drain methods are applied to construction sites to prevent base from breaking and changing for secure construction. This study analyzed the patterns of changes displacement to determine efficient range of improvement since range of vertical drain material determines vertical and horizontal changes based on the width range of under ground improvement. Changes of intensity with distance from embankment edge were also analyzed in the field study of embankment slope.

  • PDF

Analysis on Characteristics of Sediment Produce by Landslide in a Basin 1. Simulation of Sediment Produce and its Verification (유역 내에서의 산사태에 의한 토사발생특성 분석 1. 토사발생모의 및 검증)

  • Yoo, Chul-Sang;Kim, Kee-Wook;Kim, Seong-Joon;Lee, Mi-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.133-145
    • /
    • 2010
  • This study analyzed the characteristics of sediment produce by landslide triggered by rainfall. One-dimensional unsaturated groundwater model and infinite slope stability analysis were used to estimate the behavior of soil moisture and slope stability according to rainfall, respectively. Slope stability analysis was performed considering on soil depth and characteristics of trees. As the results considering on recovery of the failed slopes, much amount of sediment was produced in 1963, 1970, and 2002. As the results of verification of simulation results using Landsat 5 TM images, we can find differences of landslide location between the results from model and satellite images. These differences can be caused by uncertainties of the rough parameters in the model. However, in the case that Obong-dam basin was divided into two subbasin, Wangsan-chun and Doma-chun basin, the results of each subbasin show errors around 20%. And only 4% of error occurred in the case of comparing landslide area on the entire Obong-dam basin. These errors seem insignificant considering on the errors which can be caused from the analyses in this study such as estimation of sediment produce, soil cover classification, and estimation of landslide area.

A Study on the Slope Analysis of Weathered Limestone Soils during Rainfalls (강우 시 석회암 풍화토 사면의 안정해석에 관한 연구)

  • Kim Jong-Ryeol;Kang Seung-Goo;Kang Hee-Bog;Park Seung-Kyun;Park Chol-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • A set of soil samples were picked up from a failed slope formed by rainfall in limestone zone in Jangseong-gun, Jeonnam, Korea, to find out its physical and mechanical characteristics for this study, and variation of safety factor depending on slope inclination was defined by analysing slope stability affected by rainfall. Decomposed limestone soil in the research area is composed of quartz, orthoclase, gibbsite, geothite, etc., with specific gravity of 2.73, and this soil is included in SC by unified soil classification system. Calcium ingredient decreased remarkably during weathering at its mother rock. Coefficient of permeability is 2.56×10/sup -4/ cm/ sec, similar to its value of silty clay. Cohesion decreases remarkably from 3.0 t/ ㎡ to 0.72 t/ ㎡, and Φ value of internal friction angle tends to decrease as it turns to be saturated soil from partial saturated soil in the shear test. To analyze slope stability affected by rainfall, it is reasonable to seek seepage depth with reference to rainfall* intensity. In the slope stability analysis, when the seepage depth is the larger, its safety factor is the less, which makes the slope unstable. Comparing with minimum safety factor, 1.5 of cut slope in consideration of the seep-age line, safety factor is found to be satisfactory only when inclination of cut slope of decomposed limestone soil is more than 1:1.2 slope at least considering rainfall. It is also found that decrease of cohesion has great effect on decline of safety factor of slope while partial saturated soil turns to be saturated soil.

Analysis of Trench Slope Stability in Permafrost Regions According to the Equipment Load (동토 파이프라인 매설공사 시 장비하중에 의한 트렌치 안전성 분석)

  • Kim, Jong-Uk;Kim, Jung-Joo;Lee, Jae-Hyuk;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.17-25
    • /
    • 2017
  • Recently, the need of alternate energy resources is increasing due to the global warming issue. The natural gas buried in the extremely cold regions of Alaska and Siberia is of much interest these days. However, the construction standards are needed to be used in extremely cold regions. Particularly, more research work need to be carried out on the trench stability so that the safety of the workers is ensured and the damage to the construction machinery can also be reduced resulting in smaller construction period. In this study, the process for lowering of the pipelines of 30 and 40 in. diameters in the ground conditions (silt and peat) of Yakutsk, Russia was analyzed. The slopes of the ground surface were considered as $0^{\circ}$, $10^{\circ}$, and $20^{\circ}$ to be excavated in summer and winter. The analysis results show that the weight of pipelayer affects the trench stability. Numerical analysis was performed by considering the types of pipelayers, distance between the trench and pipelayer, and the distance between the pipelayers placed longitudinally along the trench. The results show that as the distance between the pipelayer and the trench decreases, the factor of safety of the slope decreases with an increase in the slope of the ground surface. When the slope of the ground surface was $20^{\circ}$, the breakout surface was anticipated to continue from the pipelayer to the trench boundary. In winter season, stability problem of the trench was not observed when the slope of the ground surface was less than $20^{\circ}$.

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

Forecasting of Landslides Using Geographic Information System (지형정보시스템을 이용한 산사태 예측)

  • 강인준;장용구;곽재하
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 1993
  • Landslides, failure of slope stability by natural or artificial factors, occur loss of life and properties. Recently, landslides hazard area predict statistical methods and field measurements, but there are so many difficulties to find the occurrence system because of its complexity. To predict the landslide harvard region, model area is the Seodong in Pusan where occurred landslides. Database of ground height made the each topography in map scale of 1 : 25,000, 1 : 10,000, 1 : 5,000 and 1 : 1,200. Authors knew to landslide hazard area by the weight of ground height data and slope angle data. Finally, aerial photo analysis is possible find landslide hazard area.

  • PDF

A Foundmental Study on the Landslide Hazard Assessment Using Database of Ground Height (표고 데이타베이스에 의한 산사태 위험평가의 기초적 연구)

  • Kang, In Joon;Lee, Hong Woo;Kwak, Jae Ha;Joung, Jae Hyeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.211-218
    • /
    • 1993
  • Landslides, failure of slope stability by natural or artificial factors, occur loss of life and properties. Recently, statistical methods and field measurements are used to a study for prediction of landslide harzard area, but there are so many difficulties to find the occurence system because of its complexity. In this study, authors choose the model area where occured landslides to predict the landslide hazard. Authors made a database of ground height to compare the each topography by scale of 1 : 25,000, 1 : 10,000, 1 : 5,000 and 1 : 1,200. Authors predict to landslide hazard area by the weight of ground height data and slope angle data. Finally, authors could know the possibility of prediction to find the landslide hazard partly.

  • PDF

Probabilistic Analysis for Stability Evaluation of Landslides Using Geo-spatial Information (지형공간 정보를 활용한 산사태 안정평가의 확률론적 해석)

  • Park, Byung-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.55-62
    • /
    • 2006
  • The purpose of the current research is to evaluate the possibility of landslides by using geo-spatial information system. Geological information has been summarized and stability analysis for infinite slopes has been conducted based on the force equilibrium. In addition, the analysis of landslides was performed based on probabilistic approach by using probabilistic variables which can include uncertainty of input parameters. For the purpose of testifing the applicability of the analysis method actual geological data from a construction site was obtained, thereby performing both a preliminary analysis for a large area and detailed analysis for a better result. As a result of the current analysis several issues such as the possibility of development of landslides, detailed analysis of where landslides are most likely to be developed were analysed by using two concepts of safety and index of failure probability.

  • PDF