• Title/Summary/Keyword: 사다리꼴 핀

Search Result 12, Processing Time 0.024 seconds

Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins (대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교)

  • Kang, Hyungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.

Optimum Performance and Design of a Trapezoidal Fin (사다리꼴 핀의 최적 성능과 설계)

  • Kang, Hyung-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.82-85
    • /
    • 2006
  • A trapezoidal fin with various lateral surface slopes is designed optimally by using one-dimensional analytic method. For four different convection characteristic numbers, the trend of heat loss as a function of fin tip length is shown. The optimum heat loss is somewhat arbitrarily chosen as 92% of the maximum heat loss. The optimum fin length corresponding to this optimum heat loss versus convection characteristic number is presented. The optimum effectiveness and specific effectiveness is presented as a function fin shape factor.

  • PDF

Optimization of an Asymmetric Trapezoidal Fin Based on the Fixed Fin Base Height (고정된 핀 바닥 높이에 기준한 비대칭 사다리꼴 핀의 최적화)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.45-54
    • /
    • 2012
  • Optimization of the asymmetric trapezoidal fin with various upper lateral surface slope is made using a two-dimensional analytic method. For the fixed fin base height, the optimum heat loss, fin length and effectiveness are represented as inner fluid convection characteristic number, fin base thickness, fin base height, fin shape factor and ambient convection characteristic number. For this optimum procedure, the optimum heat loss is defined as 95% of the maximum heat loss from the fin. One of the results shows that optimum heat loss and effectiveness seems independent of the fin shape factor while optimum fin length decreases almost linearly as the fin shape factor increases.

Analysis of Temperature Distribution and Heat Loss for an Asymmetric Trapezoidal Fin (비대칭 사다리꼴 핀의 온도분포와 열손실 해석)

  • Kang, Hyung-Suk;Song, Nyeon-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.377-383
    • /
    • 2012
  • The temperature distribution of an asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For this asymmetric fin, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered simultaneously. The temperature profile with the variation of dimensionless fin length and height coordinates is shown. Also, the temperature variation at the bottom tip of the fin is presented as a function of the fin shape factor. Heat losses through the fin base and from each side are compared for variations in fin length. One of the results shows that temperature at the fin bottom tip decreases linearly as the fin shape factor increases.

Performance Analysis of a Geometrically Asymmetric Trapezoidal Fin for an Enhanced Heat Exchanger (향상된 열교환기를 위한 기하학적 비대칭 사다리꼴 핀의 성능 해석)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Performance of the asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For a fin base boundary condition, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered. Heat loss and fin efficiency are represented as a function of the fin base thickness, base height, inner fluid convection characteristic number, fin tip length and fin shape factor. One of the results shows that heat loss increases while fin efficiency decreases as the fin shape factor increases.

The Effect of Inside and Outside Fluids on the Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화에 미치는 내 외 유체의 영향)

  • Kang, Hyung-Suk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.14-22
    • /
    • 2007
  • A reversed trapezoidal fin with variable lateral surface slope is optimized using a two-dimensional analytic method. For a fin base boundary condition, convection from the inside fluid to the inside wall and conduction from the inside wall to the fin base are considered. Heat loss from the fin tip surface is not ignored. The maximum heat loss at the practical fin length, the corresponding optimum fin efficiency, fin length and fin base height are presented as a function of the fin inside and outside convection characteristic numbers. One of the results shows that the optimum fin shape becomes 'fatter and shorter' as the ratio of fin tip height to base height increases.

Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화)

  • Kang Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.987-995
    • /
    • 2006
  • A reversed trapezoidal fin with the fluid in the inside wall is analyzed and optimized in this study. As a fin base boundary condition, the heat transfer from inside wall fluid to the fin base is considered. The values of fin base temperature with the variations of inside wall fluid convection characteristic number and fin base length are listed. The heat transfer, fin effectiveness, fin length and fin base height are optimized as a function of fin base length, convection characteristic number ratio, fin shape factor and fin volume.

Optimum Design of a Reversed Trapezoidal Fin with Variable Fin Base Thickness (핀 바닥 두께가 변화하는 역 사다리꼴 핀의 최적 설계)

  • Kang, Hyung-Suk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.455-461
    • /
    • 2008
  • A reversed trapezoidal fin with variable fin base thickness is optimized using a two-dimensional analytical method. For the fin base boundary condition, instead of a constant temperature, heat transfer from the inside fluid to the fin base is considered. Heat loss from the fin tip is not ignored. The maximum heat loss, corresponding optimum fin effectiveness, fin length and base height are presented as a function of the fin base thickness, shape factor and volume.

Optimum Design of a Geometrically Asymmetric Trapezoidal Fin Based on the Fixed Fin Base Height (고정된 핀 바닥 높이에 기준한 기하학적 비대칭 사다리꼴 핀의 최적 설계)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.81-87
    • /
    • 2008
  • A geometrically asymmetric trapezoidal fin with variable fin base thickness and height is optimized based on the fixed fin base height using a one-dimensional analytic method. The temperature profile along the normalized X position in the fin is presented. For the fixed fin base height, the optimum heat loss, fin length and efficiency as a function of inside fluid convection characteristic number, fin base thickness and height, fin shape factor, convection characteristic numbers ratio and ambient convection characteristic number are represented. One of the results shows that the effect of fin base height and ambient convection characteristic number on the optimum values is remarkable.

A Study of the Twisting and Extrusion Process of the Product with Trapezoidal Helical Fin from the Round Billet (원형빌렛으로부터 나선형 사다리꼴 핀을 가진 제품의 비틀림 압출가공법에 관한 연구)

  • 김한봉;진인태
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.143-151
    • /
    • 1999
  • The twisting and extrusion process of the product with trapezoidal helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted die surface connecting the die entrance section and the die exit section linearly. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is increased linearly by axial distance from the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction condition.

  • PDF