• 제목/요약/키워드: 사냥 모델

검색결과 5건 처리시간 0.024초

FSM 기반의 게임 NPC 인공 지능 평가 (An Artificial Intelligence Evaluation on FSM-Based Game NPC)

  • 이면재
    • 한국게임학회 논문지
    • /
    • 제14권5호
    • /
    • pp.127-136
    • /
    • 2014
  • 게임 NPC(Non Player Character)는 게임 플레이어와 대전 또는 협력함으로써 게임의 재미를 증가시키는 중요한 요소이다. 대부분 기존 게임에서 제공되는 NPC 인공지능은 FSM(Finite State Machine)으로 제작되어 행동 패턴이 정해져 있고 능력이 동일한 특징을 갖고 있다. 따라서 이러한 특징을 갖는 NPC들과 대전하는 플레이어는 창조적인 게임 플레이를 진행하는 것이 어려울 수 있다. 본 논문은 이 문제점을 개선하기 위하여 실제 생활에서 늑대들이 먹이를 사냥하는 행동 모델을 게임 NPC의 행동 모델로 제작하고 이를 평가하기 위한 것이다. 이를 위하여 첫째, 실세계에서 늑대들이 먹이를 포획하기 위한 행동 상태들을 조사 연구한다. 둘째, 이 행동 상태들을 Unity3D 엔진을 이용하여 구현한다. 셋째, 구현된 NPC들의 상태 전이 비율과 실세계의 NPC들의 상태 전이 비율, 일반적인 게임 NPC의 상태 전이 비율을 비교한다. 비교 결과, 구현된 NPC들의 상태 전이 비율은 실세계의 상태 전이 비율과 비슷함을 보인다. 이는 구현된 NPC들의 행동 패턴이 실세계의 늑대 사냥 행동 패턴과 유사함을 의미하는데, 이렇게 함으로써 플레이어에게 보다 증가된 사용자 경험을 제공할 수 있다.

게임 플레이어 모델을 위한 속성 추출과 모델 활용 사례 (Case study of property extraction and utilization model for the game player models)

  • 윤태복;양성일
    • 한국게임학회 논문지
    • /
    • 제21권6호
    • /
    • pp.87-96
    • /
    • 2021
  • 산업의 발전에 따라 게임에 활용되는 기술도 고도화 되고 있다. 특히, 인공지능 기술은 게임로그를 수집하고 분석하여 패턴을 추출하고 게임의 자동화와 지능화를 위하여 활용되고 있다. 이러한 게임 플레이어의 패턴은 온라인 게임에서 플레이어 매칭, 적대적 NPC의 생성, 게임 월드의 밸런싱 등 적용 범위가 넓다. 본 연구에서는 게임 플레이어의 모델 생성 방법을 제안한다. 모델 생성을 위하여 사냥, 수집, 이동, 전투, 위기관리, 제작, 상호작용 등의 속성을 정의하였으며 의사결정나무 방법을 이용하여 패턴을 추출하고 모델링 하였다. 제안하는 방법의 검증을 위하여 상용 게임의 게임 로그를 이용하여 모델링하고 에러율을 확인하였으며 유효한 결과를 확인하였다.

Forecasting of ADSL vs VDSL; by Using Lotka-Volterra Competition (LVC) Model

  • Cho, Byung-sun;Cho, Sang-Sup
    • 기술혁신학회지
    • /
    • 제6권2호
    • /
    • pp.213-227
    • /
    • 2003
  • 초고속 인터넷 서비스는 사용자수의 증가와 더불어 고객의 다양한 욕구 즉 인터넷 방송, 주문형비디오(VOD)서비스, 원격교육, 고화질 TV 등 대용량의 멀티미디어 서비스에 대한 욕구가 폭발적으로 증가하고 있다. 이러한 욕구를 충족하기 위해서는 현재의 초고속 인터넷서비스로서는 속도에 대한 한계에 부딪치게 되어 통신사업자들은 새로운 기술 또는 여러 가지 기술적 대안들을 추구하고 있다. 2002년부터 시작하여 2003년 이후에는 멀티미디어 수요의 증가에 따라 ADSL을 대체하는 기술로 VDSL이 등장하여 매년 꾸준한 신규가입자 수요가 발생하고 있으나, 통신사업자들은 각각의 망 특성, 시장위치, 전략적 필요성 둥에 의해 상용화를 적극 검토,추진하고 있으나 각각 전개하는 방식은 조금씩 다르다. 따라서 본 연구에서는 통신사업자들의 가입자망 진화 전략에 대해 살펴 본 다음 Lot3n-Volterra Competition (LVC) 모델을 이용 ADSL 과 VDSL 두 기술간의 상호 경쟁 및 대체를 통해 어떻게 진화 되어가는지를 살펴보았다. 대표적인 통신사업자인 KT는 막강한 자금력을 바탕으로 시장 확대 및 경쟁사와의 차별화를 위해 VDSL 서비스 조기도입을 서두르고 있고, 하나로는 자금의 열세로 인한 ADSL 투자비를 회수 할때까지 VDSL 서비스를 연기하고 있는 실정이다. ADSL과 VDSL 두 기술의 관계는 Lotka-Volterra Competition (LVC) 모델을 이용한 시뮬레이션 결과를 통해 빠른 속도와 비슷한 가격대의 VDSL이 침략자(predator)로 기존 시장 지배자인 ADSL을 사냥감(prey)으로 빠른 속도로 대체해 나가는 것을 알 수 있었다.

  • PDF

Artificial Neural Network를 이용한 화살 성능에 대한 연구 (A Study of Arrow Performance using Artificial Neural Network)

  • 정영상;김성신
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.548-553
    • /
    • 2014
  • 제조공정을 통해 생산된 화살의 성능을 평가하기 위한 방법으로, 활과 화살을 오랫동안 사용해 온 사냥꾼이나 레저 스포츠 용품을 만드는 기술자, 그리고 전문가의 개인적인 경험 등이 사용된다. 또한, 반복슈팅실험을 통해 얻어진 화살의 탄착점 집적도는 생산된 화살의 성능을 평가하기 위한 중요한 지표이다. 탄착점 집적도와 초고속카메라를 통해 촬영된 비행중인 화살의 이미지를 이용하여, 화살의 성능에 대한 연구가 수행되고 있다. 하지만, 화살의 특성(길이, 무게, 스파인, 오버랩, 곧기)과 탄착점의 분포간의 상관관계에 대한 연구는 부족하다. 본 논문에서는 탄착점 분포를 수치적으로 출력할 수 있는 시스템을 개발하고, 생산된 화살이 가지는 특성과 탄착점 사이의 상관관계모델을 구현하는 것이 목적이다. 모델의 입력은 화살이 가지는 특성(스파인, 곧기)이 사용되고, 출력은 화살의 노크 각도를 120도씩 회전시키면서 3번 반복 슈팅하여 얻어지는 삼각형 모양 좌표의 MAD(mean absolute distance)를 이용하였다. 상관관계 모델을 구현하기 위해서 입출력 학습데이터를 수집하였고, 모델의 구현을 위해서는 인공신경회로망(Artificial neural network, ANN)을 사용하였다.

행동 패턴 모델을 이용한 게임 봇 검출 방법 (Behavior Pattern Modeling based Game Bot detection)

  • 박상현;정혜욱;윤태복;이지형
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.422-427
    • /
    • 2010
  • 2004년 이후 정보기술의 성장과 더불어 게임 서비스에 대한 피해 사례가 해 마다 빠르게 증가하고 있는 실정이다. 특히 게임 봇(자동사냥 프로그램)에 대한 피해규모가 가장 크게 조사되고 있으며 이를 방지하기 위한 연구도 활발히 진행되고 있다. 게임 봇은 사용자가 입력하는 키보드나 마우스의 움직임을 대신해 자동으로 게임을 수행하는 프로그램으로 어떠한 사용자의 조작 없이도 게임 속에서의 이득 활동을 무한정 행할 수 있다. 이와 같은 행동은 일반적인 사용자에게 상대적인 불쾌감을 줄 뿐만 아니라 게임의 수명을 단축시키는 등 게임 회사 및 사용자에게 큰 피해를 발생시키고 있어 이를 방지하기 위한 방법이 주목 되고 있다. 기존의 게임 봇 검출 연구들은 단순이 사용자 개인 PC에 설치되어 동작중인 프로그램을 감시하기 때문에 게임 봇 사용자의 조작에 의해 쉽게 피해갈수 있는 단점을 가지고 있다. 따라서 본 논문에서는 게임 서버측면에서 사람과 게임 봇의 행동을 비교하여 게임 봇 사용자들이 조작이나 회피가 힘든 게임 봇 검출 방법을 제안한다. 제안 방법으로는 게임 봇과 사람의 행동 패턴 차이 모델을 정의하고 나이브 베이지안 분류기를 사용하여 게임 봇을 검출한다.