해양에서의 선박사고 발생 횟수는 매년 꾸준히 증가하고 있다. 한국해양안전심판원에서는 이러한 사례들의 판결을 관련 인력들이 공유할 수 있도록 재결서를 제작하여 발간하고 있다. 그러나 선박사고는 2019년 기준 2,971건이 발생하여, 재결서만으로 관련 인력들이 다양한 사건들의 판례를 익히기엔 어려움이 따른다. 따라서 본 논문에서는 문장 표상 기법을 이용한 다중 작업 학습을 이용하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하는 실험을 진행하였다. USE, KorBERT 두 가지의 모델을 2010~2019년 재결서 데이터로 학습하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하였으며 그에 따른 정확도를 비교한 결과, KorBERT 문장 표상을 사용한 분류 모델이 가장 정확도가 높음을 확인했다.
선원의 행동오류는 해양사고를 야기하는 하나의 직접적인 원인이기 때문에 이를 이해하는 것은 해양사고 예방에 근본이 된다. 선원의 행동오류를 이해하기 위해서는 행동오류를 추정하고 예측할 수 있어야 한다. 본 연구에서는 은닉 마르코브 모델(Hidden Markov Model, HMM)을 이용하여 선원들의 행동오류를 추정하고 예측하였다. 아울러 5가지 선박의 종류 각각에 나타나는 선원들의 행동오류를 서로 비교 분석하였다. 모델에 사용한 데이터는 해양안전심판원의 해양사고 보고서에 기록된 내용을 SRKBB(Skill-, Rule- and Knowledge-Based Behavior) 모델을 기반으로 분류하고 관측 수열을 생성하며 라벨링 작업을 통해서 구축하였다. 구축한 데이터를 적용하여 HMM을 보정하고 파라미터를 획득하여 선원들의 행동오류에 관한 모델을 구축하였다. 실험 결과, 선박 종류별로 선원들의 행동오류의 패턴은 서로 다르고, 이를 통해서 선박종류별 해기사들의 행동오류의 추정과 예측이 가능함을 일차적으로 확인할 수 있었다. 추후 본 연구를 지속 전개하여 해양사고 예방을 위한 인적오류의 저감에 기여할 수 있는 방안을 모색할 에정이다.
해양사고 예방을 위해서는 사고의 원인과 결과에 대한 분석 및 진단뿐만 아니라, 사고의 발생 패턴과 변화 추이를 예측함으로써 정량적 위험도를 제시할 필요성이 있다. 선박교통과 관련된 해양사고 예측은 선박의 충돌위험도 분석 및 항해 경로 탐색 등 선박교통의 흐름에 관한 연구가 주로 수행되었으며, 해양사고의 발생 패턴에 대한 분석은 전통적인 통계 분석에 따라 제시되었다. 본 연구에서는 해양사고 통계 자료 중 선박교통관련 사고의 월별, 시간대별 발생 현황 데이터를 활용하여 해양사고 발생 예측 모델을 제시하고자 한다. 국내 해양사고 발생 현황 중 월별, 시간대별 데이터 집계가 가능한 1998년부터 2021년까지의 통계자료 중 선박교통 관련 데이터를 분류하여 정형 시계열 데이터로 변환하였으며, 대표적인 인공지능 모델인 순환 신경망 기반 장단기 기억 신경망을 통하여 예측 모델을 구축하였다. 검증데이터를 통하여 모델의 성능을 검증한 결과 RMSE는 초기 신경망 모델에서 월별 52.5471, 시간대별 126.5893으로 나타났으며, 관측값으로 신경망 모델을 업데이트한 결과 RMSE는 월별 31.3680, 시간대별 36.3967로 개선되었다. 본 연구에서 제안한 신경망 모델을 기반으로 다양한 해양사고의 특징 데이터를 학습하여 해양사고 발생 패턴을 예측할 수 있을 것이다. 향후 해양사고 발생 위험의 정량적 제시와 지역기반의 위험지도 개발 등에 관한 추가 연구가 필요하다.
본 논문은 빅 데이터 분석을 이용하여 산악 안전사고를 예방하기 위하여 사고 예측 모델을 제시하였다. 산악 안전사고의 축적된 데이터를 파악하기 쉽게 그래프로 나타내었다. 사고가 발생하는 패턴을 알기 위하여 산악 안전사고 발생 건수의 연도별 분석, 연간 월별 사고 발생 건수, 요일별, 시간대별 분석을 수행하였다. 나타낸 그래프를 이용하여 산악 안전사고의 영향을 미치는 변수들을 가중치 모델링을 통하여 사고 예측 모델을 구성하였다. 산악 지역의 사고 다발 구역에 제시한 모델을 적용하여 예측 모델의 성능을 검정하였다.
화학공장의 누출사고는 초기에 적절히 대응하지 못할 경우 화재 폭발과 같은 2차 3차의 복합재난사고로 확산될 위험성이 매우 높다. 이러한 이유로 누출사고 발생 초기에 누출이 발생한 지점을 신속히 파악하여 현장안전요원에게 알림으로써, 보다 체계적이고 효율적인 초기대응을 가능하게 하여, 사고피해를 완화시킬 수 있는 통합적인 누출사고 대응시스템 구축은 매우 중요하다고 할 수 있다. 본 연구에서는, 통합적인 누출사고 대응시스템 구축을 위한 선행연구로, 딥러닝 기반의 누출원추적 모델 개발을 제안한다. 여수에 위치한 실제 화학공장을 대상으로 누출사고 시나리오에 대한 Computational Fluid Dynamics (CFD) 시뮬레이션을 진행한 뒤, 화학공장 경계면에 배치된 각 센서별 위치에서의 농도, 풍향 그리고 풍속데이터를 추출하고, 센서 좌표를 추가하여 인공신경망을 학습시켰다. 학습된 모델은 40개의 누출후보군에 대해 학습에 사용되지 않은 상황들에서도 75.43%의 정확도로 누출이 일어난 지점을 실시간 예측해냄을 확인하였다. 또한 누출지점 예측이 일치하지 않은 경우도, 예측된 지점이 실제 누출이 일어난 지점과 물리적으로 매우 인접함을 확인함으로써 제안된 모델을 실제 현장에 적용할시 기대되는 효과는 더 클 것으로 판단하였다.
해양 HNS(Hazardous and Noxious Substances)의 유출 사고 시, 막대한 인명 피해와 환경 훼손을 피하기 위해 유출 사고 조기 예측과 정확한 확산 경로를 예측하는 것이 필수적이다. 본 연구의 최종목적은 전산유체역학을 이용하여 HNS사고가 발생하였을 때 위험구역을 적절히 예측할 수 있는 수치해석기법을 개발하고, 다양한 해양사고조건과 환경영향을 고려하여 근접역에서의 2차원 확산 특성을 고찰하고 확산 현상을 예측하기 위한 모델을 개발하는 것이다. 본 연구에서는 상용코드인 ANSYS FLUENT(V. 17.2)을 사용하여 근접역에서의 2차원 확산특성을 모사하고 분석하였다. 특히, 누출된 HNS의 위치별 농도를 예측하기 위해 종수송방정식(Species Transport Equation)을 이용하였으며 RANS(Reynolds-Averaged Navier-Stokes) 방정식과 표준 $k-{\varepsilon}$ 모델을 이용하여 난류유동을 모사하였다. 해석된 결과는 문헌에서 얻어진 실험데이터와 상호비교하였으며 해수의 유속, HNS의 밀도에 따른 유층 두께, 해수면 HNS 평균 농도 그리고 HNS 전파 속도를 분석하였다. 유층 두께는 해류 유속에 따라 변화하며 변화 경향에 따라 두 구간으로 나눌 수 있다. 해류 전파 속도는 대체로 해류 유속과 선형적 비례관계를 갖는 것으로 나타났다. 해수면 평균 HNS 농도는 해류 유속에 선형적으로 비례하여 감소하며, HNS 밀도가 큰 경우 해수면 평균 HNS 체적 농도는 더 빠르게 감소하게 된다. 이러한 결과는 HNS 확산 특성을 분석하고 관련된 예측모델을 개발하는 데에 기여할 수 있다.
실시간으로 수집되는 사고 정보를 분석하여 해당 사고에 대한 분석적이고 예측적 서비스를 제공하는 것은 중요하다. 특히 발생이 진행 중인 사고에 대한 원인과 피해에 대한 규모 예측은 대응에 강도를 가늠할 수 있는 체계로 재난 발생에 대한 예측과 발생 초기 재난에 대한 분석을 위하여 뉴스 정보와 국민재난안전포털의 안전관리일일상황 정보를 분석할 필요가 있다.
육상, 철도, 항공 등 타 교통분야에서 지속적으로 사고와 인명피해가 줄어든 반면, 해양분야는 해양사고가 증가하며 실효적 해양교통안전관리에 대한 필요성이 대두되고 있다. 최근 3년간 국내 해상에서 발생한 충돌사고 중 어선을 포함한 충돌사고가 전체의 약 84%를 차지하며, 해상교통의 주요 변수인 어선을 포함한 국가의 해상교통량 파악은 반드시 필요한 실정이다. 본 연구에서는 현 정부 국정과제인 '디지털 해상 교통망 구축'과 더불어 해양교통안전관리체계 마련의 일환으로 국내 전체 선박위치발신장치(AIS, V-PASS) 데이터를 활용하여 해상교통량을 분석하고 예측 모델을 개발한다. 이를 위해 선박 밀집도를 통한 그리드별 공간가산분석과 항적 데이터 전처리 및 선형화, 선박 길이에 따른 점용면적 산정을 통한 단위 그리드별 해상교통량을 분석한다. 또한, 과거 교통량 데이터는 딥러닝 기반의 시계열 특성을 지닌 RNN과 LSTM 모델을 활용하여 교통량 예측 모형을 개발한다. 본 연구의 결과는 해상교통량과 해양사고의 연관성 분석 및 속력제한구역 등 해상정책 수립의 정량적 근거를 제공하며, 국민에게 해상교통정보 제공을 통해 교통복지 증진에 기여할 수 있다.
본 논문은 특정 도로조건에 대하여 어떤 형태의 중앙선침범 예방시설물을 설치할 것인가에 대한 비용-효율적인 기준 마련을 목표로 삼고, 그 첫 단계로 중앙선침범사고 예측모델을 개발하였다. 예측모델은 중앙선침범 예측과 침범후 대향차량과의 충돌 확률로 이루어진다. 중앙선침범 예측은 교통량에 관계되며, 이는 Hutchinson과 Kennedy(1966)의 연구에서 인용하였다. 중앙선을 침범한 후 대향차량과의 충돌 확률은 중앙선을 침범하는 차량의 침범각의 분포에 따라 주행거리와 주행시간을 계산하고, 음지수분포로 가정한 대향차량의 출현에 간격수락이론을 적용하였다. 제시된 중앙선침범사고 예측모델을 통하여 예측된 사고건수는 사고감소에 대한 편익을 계산할 수 있게 하며, 이는 중앙선침범예방시설 설치비용 계산과 함께 경제성분석을 가능하게 하여 비용-효율적인 중앙선침범예방시설 설치기준마련에 도움을 줄 것이다.
우리나라는 최근 4대강 살리기 사업의 보 건설로 인하여 하천의 수리특성이 크게 변화되고 있어 새로운 하천 환경변화가 충분히 반영된 수질오염사고 대응시스템의 구축이 필요하다. 국내 하천의 오염사고는 매년 50여건 발생하고 있으며, 2008년 김천 유화공장 화재로 인한 페놀유출사고는 이동시간의 예측오류로 취 정수장의 사전대응에 상당한 혼란이 발생되어 먹는 물 공급에 상당한 어려움이 발생되었다. 이러한 시점에서 본 연구에서는 하천의 유역환경변화를 반영하고 실시간으로 오염물질의 이동시간과 확산농도를 예측하기 위한 수질오염사고대응예측시스템을 개발하였다. 본 시스템은 평상시 4대강의 본류 및 주요 지방 1 2급 하천에 대해 수리모델을 매일 업데이트하고, 3차원 수리 수질모형인 EFDC의 독성모듈을 개선하여 예측모델로 사용하고 있으며, 최적방제방법을 선정하기 위해 상류 댐, 보, 농업용저수지 방류량 등을 분석할 수 있도록 구성되어 있다. 시스템의 예측결과는 방제기관, 취 정수장 등의 사전대응 능력을 높이는 데 기여할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.