Source Tracking Models on Chemical Leaks for Emergency Response in Chemical Plants Based on Deep Learning of Big Data

화학공장 누출사고 대응을 위한 빅데이터-딥러닝 누출원 추적모델

  • 김현승 (명지대학교 화학공학과 지능형시스템연구실) ;
  • 신동일 (명지대학교 화학공학과.재난안전학과)
  • Published : 2017.11.17

Abstract

화학공장의 누출사고는 초기에 적절히 대응하지 못할 경우 화재 폭발과 같은 2차 3차의 복합재난사고로 확산될 위험성이 매우 높다. 이러한 이유로 누출사고 발생 초기에 누출이 발생한 지점을 신속히 파악하여 현장안전요원에게 알림으로써, 보다 체계적이고 효율적인 초기대응을 가능하게 하여, 사고피해를 완화시킬 수 있는 통합적인 누출사고 대응시스템 구축은 매우 중요하다고 할 수 있다. 본 연구에서는, 통합적인 누출사고 대응시스템 구축을 위한 선행연구로, 딥러닝 기반의 누출원추적 모델 개발을 제안한다. 여수에 위치한 실제 화학공장을 대상으로 누출사고 시나리오에 대한 Computational Fluid Dynamics (CFD) 시뮬레이션을 진행한 뒤, 화학공장 경계면에 배치된 각 센서별 위치에서의 농도, 풍향 그리고 풍속데이터를 추출하고, 센서 좌표를 추가하여 인공신경망을 학습시켰다. 학습된 모델은 40개의 누출후보군에 대해 학습에 사용되지 않은 상황들에서도 75.43%의 정확도로 누출이 일어난 지점을 실시간 예측해냄을 확인하였다. 또한 누출지점 예측이 일치하지 않은 경우도, 예측된 지점이 실제 누출이 일어난 지점과 물리적으로 매우 인접함을 확인함으로써 제안된 모델을 실제 현장에 적용할시 기대되는 효과는 더 클 것으로 판단하였다.

Keywords