• Title/Summary/Keyword: 사고 건수

Search Result 328, Processing Time 0.026 seconds

고속도로 교통사고의 원인분석

  • Korea Tire Manufacturers Association
    • The tire
    • /
    • s.104
    • /
    • pp.51-52
    • /
    • 1983
  • 본자료는 최근 일본도로공단에서 관리하고 있는 전국 고속도로와 일반유료도로에서 1981년 (1월~12월)에 발표한 교통사고 및 차량고장건수에 대해 동공단에서 발표한 도로별ㆍ원인별 및 차종별ㆍ원인별로 조사분석한 결과를 종합 정리한 것이다.<편집자 주>

  • PDF

Effects of maximum speed limit on Gyeongbu Expressway (경부고속도로 최고제한속도 상향에 따른 교통사고 영향 분석)

  • Song, Yinhua;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.719-731
    • /
    • 2017
  • In September 2010, the Korea government increased the speed limit on the Gyeongbu Expressway (Cheonan IC.-Yangjae IC) from 100 to 110 km per hour. This paper considers ARIMA-Intervention model to analyze the effects of the speed limit change on the incidences of traffic accidents and injuries. In addition, in order to investigate the effects more clearly, we also analyze the difference between the two lines of Cheonan IC-Yangjae IC and Busan IC-Cheonan IC. As a result, we observe that the numbers of accidents and injuries have increased after the speed limit change. The increases are strikingly distinctive in comparison to other lines (Busan IC-Cheonan IC) where there have been no changes in the maximum speed limit.

A Visualization of Traffic Accidents Hotspot along the Road Network (도로 네트워크를 따른 교통사고 핫스팟의 시각화)

  • Cho, Nahye;Jun, Chulmin;Kang, Youngok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.201-213
    • /
    • 2018
  • In recent years, the number of traffic accidents caused by car accidents has been decreasing steadily due to traffic accident prevention activities in Korea. However, the number of accidents in Seoul is higher than that of other regions. Various studies have been conducted to prevent traffic accidents, which are human disasters. In particular, previous studies have performed the spatial analysis of traffic accidents by counting the number of traffic accidents by administrative districts or by estimating the density through kernel density method in order to identify the traffic accident cluster areas. However, since traffic accidents take place along the road, it would be more meaningful to investigate them concentrated on the road network. In this study, traffic accidents were assigned to the nearest road network in two ways and analyzed by hotspot analysis using Getis-Ord Gi* statistics. One of them was investigated with a fixed road link of 10m unit, and the other by computing the average traffic accidents per unit length per road section. As a result by the first method, it was possible to identify the specific road sections where traffic accidents are concentrated. On the other hand, the results by the second method showed that the traffic accident concentrated areas are extensible depending on the characteristic of the road links. The methods proposed here provide different approaches for visualizing the traffic accidents and thus, make it possible to identify those sections clearly that need improvement as for the traffic environment.

A Study to Predict the Traffic Accident Severity Level Applying Neural Network at the Signalized Intersections (인공신경망을 적용한 신호교차로 교통사고심각도 예측에 관한 연구)

  • Choi, Jae-Won;Kim, Seong-Ho;Cho, Jun-Han;Kim, Won-Chul
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.127-135
    • /
    • 2004
  • 교차로 안전성 진단과 관련된 기존의 연구는 교차로 상에서 발생한 사고 자료에 기초하여 교차로 기하구조 요소, 교통량 및 신호운영방법 등과 관련된 요인을 변수로 사용하여 교통사고건수 예측모형 개발에 관한 연구가 대부분이다. 그러나, 분석하고자 하는 대상 교차로의 사고건수 예측모형을 개발하기 위해 필요한 교통사고 자료의 경우 단 기일에 걸쳐 획득되지 않으며 몇 년간의 사고 자료를 요구할 수도 있다. 이러한 자료를 이용하더라도 사고 발생 기간동안 교차로 사고에 영향을 미치는 요인(교차로 운영방법, 기하구조 등)이 변화될 수도 있다는 문제점을 지닌다. 이와 같은 이유로 교차로 안전성을 진단하는데 있어 기존 교통사고 자료는 언제나 절대적인 자료가 될 수 없다. 이에 대한 보완책으로, 3일에서 5일정도의 조사 자료만으로도 안전성 진단이 가능한 상충자료를 이용하여 교차로 안전성 진단을 할 수 있다. 본 연구는 기존사고 자료를 이용하여 사고 발생에 기인하는 여러 변수들을 교통사고심각도와의 상관관계를 분석하고, 상관관계가 높은 변수를 이용하여 신경망 사고심각도 예측모형을 개발하였으며, 모형 검증을 위해 다중회귀사고심각도 예측모형을 개발하여 비교 평가한 결과 신경망 사고심각도 예측모형의 예측력이 우수한 것으로 나타났다. 현장에서 조사된 상충자료를 신경망 사고심각도 예측모형에 적용하여 상충이 사고로 연결 될 경우 사고심각도를 예측하였으며, 예측된 사고심각도에 가중치를 부여하여 대상 교차로 위험우선순위를 결정한 결과 사고비용에 기초한 위험우선순위 결정법과 같은 순위의 결과를 도출하였다.

The Study of Prediction Model of Gas Accidents Using Time Series Analysis (시계열 분석을 이용한 가스사고 발생 예측 연구)

  • Lee, Su-Kyung;Hur, Young-Taeg;Shin, Dong-Il;Song, Dong-Woo;Kim, Ki-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.8-16
    • /
    • 2014
  • In this study, the number of gas accidents prediction model was suggested by analyzing the gas accidents occurred in Korea. In order to predict the number of gas accidents, simple moving average method (3, 4, 5 period), weighted average method and exponential smoothing method were applied. Study results of the sum of mean-square error acquired by the models of moving average method for 4 periods and weighted moving average method showed the highest value of 44.4 and 43 respectively. By developing the number of gas accidents prediction model, it could be actively utilized for gas accident prevention activities.

A Study for Development of Expressway Traffic Accident Prediction Model Using Deep Learning (딥 러닝을 이용한 고속도로 교통사고 건수 예측모형 개발에 관한 연구)

  • Rye, Jong-Deug;Park, Sangmin;Park, Sungho;Kwon, Cheolwoo;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.14-25
    • /
    • 2018
  • In recent years, it has become technically easier to explain factors related with traffic accidents in the Big Data era. Therefore, it is necessary to apply the latest analysis techniques to analyze the traffic accident data and to seek for new findings. The purpose of this study is to compare the predictive performance of the negative binomial regression model and the deep learning method developed in this study to predict the frequency of traffic accidents in expressways. As a result, the MOEs of the deep learning model are somewhat superior to those of the negative binomial regression model in terms of prediction performance. However, using a deep learning model could increase the predictive reliability. However, it is easy to add other independent variables when using deep learning, and it can be expected to increase the predictive reliability even if the model structure is changed.

Hierarchical time series forecasting with an application to traffic accident counts (계층적 시계열 분석을 이용한 지역별 교통사고 발생건수 예측)

  • Lee, Jooeun;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.181-193
    • /
    • 2017
  • The paper introduces bottom-up and optimal combination methods that can analyze and forecast hierarchical time series. These methods allow forecasts at lower levels to be summed consistently to upper levels without any ad-hoc adjustment. They can also potentially improve forecast performance in comparison to independent forecasts. We forecast regional traffic accident counts as time series data in order to identify efficiency gains from hierarchical forecasting. We observe that bottom-up or optimal combination methods are superior to independent methods in terms of forecast accuracy.

A Study of Traffic Accident Analysis Model on Highway in Accordance with the Accident Rate of Trucks (화물차사고 비율에 따른 고속도로 교통사고 분석모형에 대한 연구)

  • Yang, Sung-Ryong;Yoon, Byoung-jo;Ko, Eun-Hyeok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.570-576
    • /
    • 2017
  • Trucks take up more portions than cars on highways. Due to this, road use relatively diminish and it serves locally as a threatening factor to nearby drivers. Baggage car accident has distinct characteristics so that it needs the application of different analysis opposed to ordinary accidents. Accident prediction model, one of accident analyses, is used to predict the numbers of accident in certain parts, establish traffic plans as well as accident prevention methods, and diagnose the danger of roads. Thus, this study aims to apply the accident rate of baggage car on highways and calculate the correction factor to be put in the accident prediction models. Accident data based on highway was collected and traffic amounts and accident documents between 2014 and 2016 were utilized. The author developed an accident prediction model based on numbers of annual accidents and set mean annual and daily traffic amounts. This study intends to identify the practical accident prediction model on highway and present an appropriate solution by comparing the prediction model in accords with the accident rate between baggage cars.

$\cdot$외과 영역의 의료사고

  • 한국당뇨협회
    • The Monthly Diabetes
    • /
    • s.141
    • /
    • pp.36-37
    • /
    • 2001
  • 의료사고 상담건수가 99년에는 월 평균 630건에서 2000년 815건, 2001년 1,110건으로 점차 늘고 있다는 한국소비자보호원의 의료팀의 발표가 있었다. 2년 사이에 두 배 가까이 오른 의료사고에 대한 상담내용으로는 1위가 의료진의 부주의로 79.3$\%$, 2위가 치료효과 불만으로 7.6$\%$, 3위가 진료비 불만으로 6.4$\%$를 차지하고 있다.

  • PDF