• Title/Summary/Keyword: 사각단면

Search Result 108, Processing Time 0.025 seconds

Suggestion for Confinement Steel Ratio of Rectangular RC Bridge Piers (사각단면 철근콘크리트 교각의 심부구속철근비 제안)

  • Park, Chang-Kyu;Chung, Young-Soo;Yun, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.749-757
    • /
    • 2006
  • Many losses of life and extensive damage of social infrastructures have occurred due to moderate and strong earthquakes all over the world. In this research various design parameters have been evaluated to develop a rational seismic design code of rectangular reinforced concrete(RC) bridge piers. It was confirmed from this study that the axial force ratio and longitudinal steel ratio were most influencing design parameters on the seismic displacement ductility from experimental results of 54 rectangular RC bridge piers, which were tested at domestic and foregin countries. However, these important parameters are not considered in the confinement steel ratio of Korea Highway Bridge Design Specification(KHBDS). The objective of this study is to propose a rational design provision for the transverse reinforcement of rectangular RC bridge piers. New confinement steel ratio is proposed by reflecting the effect of the axial force and longitudinal steel into the current code of KHBDS. furthermore, minimum transverse confinement steel ratio is also proposed to avoid a probable buckling of longitudinal reinforcing steels of RC bridge piers with a relatively low axial force. New practical code can alleviate the rebar congestion in the plastic hinge region of RC bridge pier, which contributes to construct RC bridge piers in a simple and economic way.

A Study on the Determination of Shock Loss Coefficient on the Branch in the Double-deck Road Tunnel for Small Car (소형차 전용 복층터널 분기부에서의 충격손실 계수 결정 연구)

  • Rho, Jang-hoon;Lee, Seung-jun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • In this study, the experiment for determining shock loss at the branch is conducted for the design of network double-deck road tunnel ventilation. The shock loss coefficient that determines the quantity of shock loss has been considered only regarding the constant aspect ratio of circular or rectangular section. However the suggestion of shock loss coefficient is needed since the aspect ratio of double-deck road tunnel for small vehicle is considered around 1:3 with the low height in Korea. The experiment model was made with the scale of around 1:23 applying Reynolds similarity law, so that the shock loss coefficient on the branch of the large aspect ratio was measured. The result of the study showed that shock loss coefficients of both split branch and straight branch were measured two to three times higher than those calculated from the theoretical equation or design values of previous studies. Therefore the study resulted the effect of large aspect ratio on shock loss coefficient was huge, and it is expected that precise design value can be suggested for the design of network double-deck tunnel ventilation.

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.

A Study on the Mixing of Dilution Air and Ammonia in the Ammonia Mixing Pipe of the Thermal Power Plant De-NOx Facility (화력발전소 탈질설비의 암모니아 혼합 관에서 희석 공기와 암모니아의 혼합에 관한 연구)

  • Kim, Ki-Ho;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • According to reinforce environmental regulations, coal power plants have used selective catalytic reduction using ammonia as a reducing agent to reduce the amount of nitrogen oxide generation. The purpose of the present study was to derive a mixing device for effectively mixing dilute air and ammonia in the ammonia mixing pipe by performing computational fluid dynamic analysis. The mixing effect was compared by analysing the %RMS of ammonia concentration at the down stream cross section in the mixing pipe and the 16 outlets based on the case 1-1 shape, which is an existing mixing pipe without a mixing device. The mixing device was performed by changing the positions of a square plate on the downstream side of the ammonia supply pipe and an arc-shaped plate on the wall of the mixing pipe. In the case of the existing geometry(Case 1-1), the %RMS of ammonia concentration at the 16 outlets was 29.50%. The shape of the mixing device for Case 3-2 had a square plate on the downstream side of the ammonia supply pipe and an arc plate was installed adjacent to it. The %RMS of ammonia concentration for Case 3-2 was 2.08% at 16 outlets and it could be seen that the shape of Case 3-2 was the most effective mixing shape for ammonia mixing.

Development of the Structure for Enhancing Capillary Force of the Thin Flat Heat Pipe Based on Extrusion Fabrication (압출형 박판 히트파이프의 모세관력 향상을 위한 구조 개발)

  • Moon, Seok Hwan;Park, Yoon Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.755-759
    • /
    • 2016
  • The use of heat pipes in the electronic telecommunication field is increasing. Among the various types of heat pipes, the thin flat heat pipe has relatively high applicability compared with the circular heat pipe in the electronic packaging application. The thin flat heat pipe based on extrusion fabrication has a simple capillary wick structure consisting of rectangular cross sectional grooves on the inner wall of the pipe. Although the groove serves as a simple capillary wick, and many such grooves are provided on the inner wall, it is difficult for the grooves to realize a sufficiently high capillary force. In the present study, a thin flat heat pipe with a wire bundle was developed to overcome the drawback of poor capillary force in the thin flat heat pipe with grooves, and was evaluated by conducting tests. In the performance test, the thin flat heat pipe with the wire bundle showed a lower thermal resistance of approximately 3.4 times, and a higher heat transfer rate of approximately 3.8 times with respect to the thin flat heat pipe with grooves as the capillary wick respectively. The possibility of using the wire bundle as a capillary wick in the heat pipe was validated in the present study; further study for commercializing this concept will be taken up in the future.

Effect of Aspect Ratio of Enclosure with Inner Circular Cylinder on Three-Dimensional Natural Convection (원형 실린더가 존재하는 밀폐계의 종횡비 변화가 3차원 자연대류 현상에 미치는 영향)

  • Lee, Jeong Min;Seo, Young Min;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.717-726
    • /
    • 2016
  • This study evaluated the effect of aspect ratio of an enclosure with a heated inner circular cylinder on three-dimensional natural convection. The immersed boundary method was used to model the inner circular cylinder based on the finite volume method. The Rayleigh number was varied between $10^5$ and $10^6$, and the Prandtl number was maintained at 0.7. The aspect ratio of the three-dimensional enclosure was changed in steps of 1 within a range of 1-4 by increasing the width of the enclosure. In this study, the flow and thermal fields in the enclosure reached the steady state, and showed a mirror-symmetric pattern with respect to the center plane (x=0). In addition, the surface-averaged Nusselt number of the inner circular cylinder increased, while the total surface-averaged Nusselt number of the enclosure walls decreased with increase in the aspect ratio of the enclosure.

Recirculation Characteristics by the Inlet Angle and Dome Size of a Liquid Ramjet Combustor using PIV Method (PIV측정을 통한 램제트 연소기의 유입각과 돔 크기에 따른 선회 유동 특성)

  • Kim, Gyu-Nam;Lee, Choong-Won;Sohn, Chang-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • Flow characteristics in a liquid fuel ramjet combustor were investigated using the PIV method. The combustor has two rectangular inlets that form a $90^{\circ}$ angle each other. Three cases of test combustors are made in which those inlet angles are $30^{\circ},\;45^{\circ}\;and\;60^{\circ}$. The experiments were performed in a water tunnel test with the same Reynolds number as Mach 0.3 at the inlet. PIV software was developed to measure the characteristics of the flow field in the combustor. A large and complex recirculating flow was measured in the dome area with 4 different dome size. Experimental results shows that 1/3 dome size of combustor diameter is suitable and smaller inlet angle provide large recirculation flow at the dome of combustor as a frame holder in this experimental ranges but need to consider secondary recirculation flow in a junction region to optimize the configuration of ramjet combustor.

Effect of Aspect Ratio on the Similarity of Developing Laminar Flows in Rectangular Ducts (사각 단면 관 내부의 발달하는 층류 유동 유사성에 종횡비가 미치는 영향)

  • Lee, Gong-Hee;Baek, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.441-448
    • /
    • 2004
  • A numerical study was conducted to show the effect of aspect ratio on the analogy of the developing laminar flows between in orthogonally rotating straight duct and in a stationary curved duct of rectangular cross-section. In order. to clarify the similarity of two nows, dimensionless parameters (equation omitted) and Rossby Ro= $w_{m}$$\Omega$ $d_{h}$, in a rotating straight duct were used as a set corresponding to Dean number, (equation omitted), and curvature ratio, λ=R/ $d_{h}$, in a stationary curved duct. Four. different aspect ratios A=0.25, 0.5, 2 and 4 were considered. Under the condition that the magnitudes of Ro and λ were large enough to satisfy the 'asymptotic invariance property' and the aspect ratio was larger than 1, there were strong quantitative similarities between the two flows such as flow patterns, friction factors, and maximum axial velocity magnitudes fur the same values of $K_{LR}$ and $K_{LC}$ . On the other hand, as the aspect ratio decreased below 1 (A=0.25 and 0.5), the difference of the secondary flow intensity between these two flows was enhanced and therefore the analogy of two flows was not so evident as that of the larger aspect ratio (A=2 and 4). 4).nd 4).

Experimental Investigation on the Efficiency of Reducing Air Bubble Formation by Installing Horizontal Porous Plate in the Submerged Outlet Structure of Power Plant (발전소 수중방류구조 내 수평유공판 설치에 따른 거품발생 저감효과에 관한 실험적 연구)

  • Oh, Sang-Ho;Oh, Young-Min;Kang, Keum-Seok;Kim, Ji-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.472-481
    • /
    • 2008
  • In this study hydraulic experiment was carried out to investigate the flow characteristics in the submerged outlet structure of Boryeong power plant and the efficiency of bubble reduction by installing horizontal porous plate in the outlet structure. The cross-sectional mean velocity in the submerged outlet structure was smaller than 1 m/s, the target value at the design stage to prevent bubble outflow to the open sea area. In addition, it was found that the maximum depth of bubble penetration is reduced 30 to 50% by installing the horizontal porous plate at the second falling location in the submerged outlet structure. It is expected that the total bubble amount entrained in the water will be most efficiently reduced by installing square-hole-shape porous plate of 20 cm hole size and making its central section as non-porous structure to dissipate the energy of falling water.