• Title/Summary/Keyword: 사각노즐

Search Result 22, Processing Time 0.026 seconds

Experimental Study of Characteristics of Assist Gas in Laser Machining Using Supersonic Rectangular Nozzle (초음속 사각노즐을 이용하는 레이저 가공 보조가스의 특성에 관한 실험적 연구)

  • Son, Sang-Hyuk;Jun, Dong-Yeon;Lee, Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • An experimental study to improve the impingement characteristics of the assist gas in laser cutting was carried out. For various assist-gas pressures, and locations and installation angles of the nozzle, the characteristics of the impingement of the jet from a supersonic rectangular nozzle were compared to those previously observed for typical circular nozzles. Schlieren flow visualizations and Pitot pressure measurements downstream of the kerf surface were utilized for this purpose. The present rectangular supersonic nozzle decreased the strength of the Mach disc occurring at the corner of the kerf surface, and thus, could weaken the separation of the assist gas on the kerf surface and increase the Pitot pressures downstream compared to conventional circular nozzles.

Numerical study on flow characteristics of a variable thrust side jet thruster with a rectangular nozzle (사각 노즐이 적용된 가변 추력용 측추력기의 유동특성에 관한 수치해석)

  • Kim, Li-Na;Sung, Hong-Gye;Jeon, Young-Jin;Cho, Seung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.110-116
    • /
    • 2012
  • To analyze flow characteristics and performance of the side jet thruster with 4 shutters and rectangular nozzles, a 3-D simulation has been implemented. Numerical calculations for three rotation anlgles of the shutter, have been conducted. Internal recirculation in a chamber and asymmetric flow structure in a nozzle were observed. In addition, the more shutter rotated, the more asymmetries of flow increased, and this phenomena resulted in thrust bias. The degrees of thrust bias and thrust performance with the rotation angles of the shutter were predicted and comparisons with theoretical thrust were made.

  • PDF

Numerical Study on the Flow Characteristics of a Side Jet Thruster Having Variable Thrust with a Rectangular Nozzle (사각 노즐이 적용된 가변 추력용 측추력기의 유동특성에 관한 수치해석)

  • Kim, Lina;Sung, Hong-Gye;Jeon, Young-Jin;Cho, Seunghwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.63-70
    • /
    • 2013
  • To analyze flow characteristics of the side jet thruster with 4 shutters and rectangular nozzles, a 3-D simulation has been implemented. Numerical calculations for two rotation angles of the shutter, have been conducted. Internal recirculation in a chamber and asymmetric flow structure in a nozzle were observed. In addition, the more shutter rotated, the more asymmetries of flow increased, and this phenomena resulted in thrust bias. The degrees of thrust bias and thrust performance with the rotation angles of the shutter were predicted and compared with theoretical thrust.

Numerical Analysis of the Effect of Nozzle Shapes on the Performance of a Partial Admission Supersonic Turbine (노즐 형상에 따른 부분 흡입형 초음속 터빈의 성능특성에 관한 수치적 연구)

  • Cho, Jong-Jae;Kwon, Tae-Un;Kim, Kui-Soon;Jeong, Eun-Hwan;Park, Pyun-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.23-29
    • /
    • 2010
  • A supersonic nozzle specially is one of the important part in a supersonic turbine usually adapted the impulse type, because the flow acceleration in the turbine theoretically is done only in the nozzle. The present study deals with numerical flow analysis to investigate the effect of nozzle shapes on the performance characteristics of a partial admission supersonic turbine. The flow analysis was performed for four different nozzle shapes. The shapes of the nozzles are circular, square, straight rectangular and bent rectangular nozzles. The results of the flow analysis showed that the aerodynamic loss of turbine is highly affected by the nozzle shapes, and the partial admission loss is also highly depended on nozzle shapes. Specially, bent rectangular nozzle had the best performance among the nozzle shapes

Convective Heat Transfer Characteristics on a Plate Cooled by Rectangular Water Jets (사각수분류에 의한 평판상에서의 대류열전달 특성)

  • Kim, Uen-Young;Jeon, Sung-Taek;Park, Jong-Suen;Lee, Doug-Bong
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.53-71
    • /
    • 1995
  • Experiments have been conducted on a planar, free surface jet of water to investigate the effects of aspect ratios(AR=6.67, 15, 26.67), average nozzle velocity($V_0=3.3m/s{\sim}78m/s$) and nozzle-to-plate spacings($Z/W=6{\sim}40$) on the characteristics of heat transfer, when 3 rectangular waterjets impinging on a flat plate which has the uniform heat flux. the scondary peaks which produced by circular jets also produced by rectangular water jets. The position of the scondary peaks depends upon the aspect ratio of nozzle. The heat transfer coefficient was subjected to the influence of aspect ratio. The heat transfer correlations and best position of nozzles which produced maximum heat transfer coefficient at stagnation point are provided.

  • PDF

A Study on the Steady-State Characteristics of Symmetric Pintle Nozzle with Varying Position of Pintle and Change in Altitude (대칭형 핀틀 노즐의 핀틀 위치와 고도 변화에 대한 정상상태 특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Jung, Eunhee;Lee, Daeyeon;Choi, JaeSung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.33-45
    • /
    • 2019
  • In this study, numerical simulations were performed to investigate the steady-state characteristics of a symmetric pintle nozzle by varying the position of the pintle and the altitude. The pintle nozzle shape was used in a linear pintle nozzle that had been analyzed prior to the study, and the boundary conditions of the chamber were considered to be according to the propellant burn-back characteristics. A software was used to perform a verification analysis of the square nozzle, pintle nozzle, and high-altitude conditions with an appropriate analytical technique. The pintle position had three different nozzle throat area conditions-: fully closed, half open, and fully open, and the altitude was set at 0, 5, and 20 km. The study compared the thrust, pintle drive load, and static stability at each condition.

Development of the High-Accuracy Multi-Component Balance for Fluidic Thrust Vectoring Nozzle of UAV (UAV용 유체역학적 추력편향 노즐의 고 정확도 다분력 시험장치 개발)

  • Song, Myung-Jun;Chang, Hong-Been;Cho, Yong-Ho;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.142-149
    • /
    • 2013
  • The thrust vector control technique is essential for high maneuverability of unmanned aerial vehicles. In the present study, a multi-component balance was developed to quantitatively evaluate the thrust-vectoring performance of a supersonic rectangular nozzle based on the Coanda coflowing effect. Precise calibration and detailed data analysis were performed during the development. It was found that the cross-talk errors between load cells in the balance were less than 5%, and that the unwanted errors due to high-pressure supply tubes were almost negligible, which contributed to the high accuracy of the present balance design. Some preliminary test results of the thrust-vectoring performance of the present nozzle design were also obtained and analyzed.

Assessment of Turbulence Models with Compressibility Correction for Large Flow Separation in a Supersonic Convergent-Divergent Rectangular Nozzle (강한 박리 유동을 동반한 초음속 수축-확장 사각 노즐 유동에 적합한 난류 모델과 압축성 보정 모델의 평가)

  • Lee, Juyong;Shin, Junsu;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-47
    • /
    • 2018
  • The objective of this study is to investigate the turbulence models with compressibility correction for large separation-flow in a supersonic convergent-divergent rectangular nozzle. As turbulence models, Yang and Shih's Low-Re $k-{\varepsilon}$ model, Mener's $k-{\omega}$ SST model and Wilcox's $k-{\omega}$model were evaluated. In order to get a significant compressible effects, Sarkar and Wilcox compressibility correction models were applied to the turbulence models respectively. Also, the simulation results were compared with experimental data. The turbulence model with compressibility correction model improves both of shock position and pressure recovery, but deteriorates the length of Mach disk.

Heat transfer and flow characteristics of sweeping jet issued from rectangular nozzle with thin plate (박판이 부착된 사각노즐에서 분사되는 Sweeping jet의 유동 및 열전달 특성)

  • Kim, Donguk;Jung, Jae Hoon;Seo, Hyunduk;Kim, Hyun Dong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.58-66
    • /
    • 2019
  • This study investigated heat transfer and flow characteristics of a sweeping jet issued from a rectangular nozzle with a thin plate. A thin vertical aluminum plate was attached on outlet of fluidic oscillator to increase velocity of central area with Coanda effect and enhance heat transfer performance. From visualization and PIV experiments, sweeping jet with a thin plate has larger velocity distribution in center region than that of the normal sweeping jet while oscillating frequency is similar as the normal one. Thermographic phosphor thermometry method was used to visualize the temperature field and Nu distribution of plate with impinging sweeping jet with thin plate. Four Reynolds numbers and three jet-to-wall distances were selected as parameters. It is found that heat transfer performance in the low jet-to-wall spacing was enhanced as the cooled area was expanded. However, when the jet-to-wall spacing became greater than 8dh, heat transfer performance became similar due to reduced impinging velocity.

Design of a Shape Transition Nozzle for Lab-scale Supersonic Combustion Experimental Equipment (소형 초음속 연소시험 장치를 위한 형상 천이 노즐 설계)

  • Sung, Bu-Kyeng;Hwang, Won-Sub;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.207-215
    • /
    • 2020
  • Design of a shape transition nozzle is carried out as a part of building a lab-scale supersonic combustion experimental equipment. In order to connect directly the circular shaped vitiation air heater to the square shaped scramjet combustor, area change is evaluated by using the method of characteristics. Shape transition function is introduced to control the transition rate. Boundary layer correction was made through the three-dimensional computational fluid dynamics with the assessment on the several shape transition functions. The shape transition nozzle is proved minimizing the growth of boundary layer at the center of the rectangular nozzle surfaces that caused by the pressure gradient at the corners of the rectangular nozzle and the following recirculation regions.