• Title/Summary/Keyword: 뿌리 생장

Search Result 863, Processing Time 0.021 seconds

In vitro plantlets regeneration by multi-shoots induction and rooting in Chamaecyparis obtusa (편백의 다신초 유도 및 발근을 통한 식물체 재분화)

  • Kim, Ji Ah;Lee, Na-Nyum;Kim, Yong Wook
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.303-309
    • /
    • 2019
  • A protocol for the in vitro propagation of Chamaecyparis obtusa was established in the present study. Multi-shoots were initiated from apical shoot explants from germinants after 10 weeks of culture on Litvay medium (LM) supplemented with different concentrations of cytokinin. The effects of pre-treatment with high concentrations of cytokinin and varying concentrations (0.2 to 5.0 mg/L) of zeatin on in vitro shoot elongation and shoot multiplication were investigated. Optimal shoot growth was achieved on LM medium, with over 10-mm shoots after 10 weeks of culture. In the anti-browning tests, ethanesulfonic acid triggered the least browning in the shoot tips. The highest multi-shoot induction was observed in the 0.5-mg/L zeatin treatments, which yielded 80% induction of shoots after 10 weeks of culture, and maximum shoot elongation was observed in the LM basal medium without the hormone. The highest rooting rates were 65% under 0.2 mg/L indole-3-butyric acid.

Allelopathic Inhibition by Extracts and Volatiles from Leaf and Seed of Sicklepod (Cassia tora L.) (결명자(決明子)(Cassia tora L.) 엽(葉)과 종자(種子)의 추출물(抽出物)과 휘발성분(揮發成分)의 타감성(他感性) 생육저해작용(生育沮害作用))

  • Lim, Sun-Uk;Kim, Geum-Sook;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.160-167
    • /
    • 1992
  • The growth of weeds and some other plants has been considered to be inhibited by sicklepod(Cassia tora L.) sharing the habitat. The study was conducted, for the first time, to propose that this phenomenon is not only due to competition for physical and nutritional conditions but also due to allelopathy. In addition, autotoxicity of sicklepod was examined. The results are summarized as follows. 1. Rice sheath length reduced progressively from 18 % to 36 % with increasing the concentration of treating aqueous extracts of sickle pod seeds, but rice germination was not affected. In contrast, radish hypocotyl length was not reduced by the aqueous extract treatment but radish germination was significantly reduced by 66 % at 1 : 10 and 1 : 5 treatment. 2. Total chlorophyll contents in rice seedling decreased from 50 % to 65 % by treatment of seed aqueous extracts diluted from 1 : 50 to 1 : 5 ratio. 3. Aqueous extracts of sicklepod leaves significantly reduced hypocotyl length and fresh weight in radish and germination in rice, but mung bean was slightly affected by aqueous extracts only in fresh weight. 4. Volatiles from fresh, immature seeds with husk reduced the radish germination and seedling growth and radish root growth appeared to be more sensitive to the exposure to volatiles from fresh immature seeds than both germination and hypocotyl growth. 5. Volatiles from sickepod leaves inhibited germination and growth of radish, rice and mung bean, and seedling growth was more sensitive to volatiles from leaves than germination. 6. Volatiles from sicklepod leaves reduced germination and radicle length of sicklepod itself. 7. Collectively, it is concluded that there are water-soluble and volatile substances responsible for allelopathy in sicklepod.

  • PDF

Foliage Contact Herbicidal Activity of Dehydrocostus lactone Derived from Saussurea lappa (목향(Saussurea lappa) 유래 Dehydrocostus lactone의 경엽 접촉 살초 활성)

  • Cho, Kwang-Min;An, Xue-Hua;Chon, Jae-Kwan;Kim, Hyo-Sun;Chun, Jae-Chul
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.421-428
    • /
    • 2010
  • A foliage contact herbicidal substance was separated from ethyl ether fraction in n-hexane extract of Saussurea lappa roots and identified as dehydrocostus lactone [(3aS,6aR,9aR,9bS)-3,6,9-trimethylidene-3a,4,5,6a,7,8,9a,9b-octahydroazuleno[5,4-d]furan-2-one](DHCL). When DHCL at 4,000 ppm was foliage-applied to two grasses and two broadleaf plants, greater than 85% necrotic injury was obtained from large crabgrass, maize and soybean, whereas only about 40% necrotic injury appeared in black nightshade, indicating that DHCL has no gross morphological selectivity, but shows difference in contact response among the plant species tested. Conductivity in incubation medium of the leaf disks treated with DHCL increased as the incubation time continued. Relatively low contact injury in black nightshade as compared with the other three plant species tested was attributed to decrease in absorption of DHCL due to relatively high amount of cuticle. DHCL did not require light in the herbicidal action and there were no inhibitory effects on seed germination and cell elongation. Acetyl-CoA carboxylase activity was inhibited by 30% and 58% at $100\;{\mu}M$ and $1000\;{\mu}M$ DHCL, respectively. These results suggested that the herbicidal action of DHCL was related with inhibition of fatty acid synthesis which in turn caused to weaken cell membrane integrity.

Soil Bacterial Community in Red Pine Forest of Mt. Janggunbong, Bonghwa-Gun, Gyeongbuk, Korea, Using Next Generation Sequencing (차세대염기서열방법을 이용한 경북 봉화군 장군봉 소나무림의 토양 박테리아 군집 구성)

  • Lee, Byeong-Ju;Eo, Soo Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The soil microbiome plays important roles in material cycling and plant growth in forest ecosystem. Although a lot of researches on forest soil fungi in Korea have been performed, the studies on forest soil bacterial communities have been limited. In this study, we conducted next generation sequencing (NGS) targeting 16S rRNA gene to investigate the soil bacterial communities from natural red pine (Pinus densiflora) forest in Mt. Janggunbong, Bonghwa-gun, Gyeongbuk, Korea. Our results showed that the entire bacterial communities in the study sites include the phyla Proteobacteria, Acidobacteria, Actinobacteria, Planctomycetes, which have been typically observed in forest soils. The composition ratio of Proteobacteria was the highest in the soil bacteria community. The results reflect that Proteobacteria is copiotroph, which generally favors relatively nutrient-rich conditions with abundant organic matter. Some rhizobia species such as Burkholderia, Bradyrhizobium, Rhizobium, which are known to contribute to soil nitrogen-fixation, exist in the study sites. As a result of correlation analysis between soil physicochemical characteristics and bacteria communities, the soil pH was significantly correlated with the soil bacteria compositions.

Effects of Different Application Approaches with Diniconazole on the Inhibition of Stem Elongation and the Stimulation of Root Development of Cylindrical Paper Pot Seedling (생장조절체 처리가 원통형 종이포트묘의 도장 억제 및 근권부 발달에 미치는 영향)

  • Jang, Dong Cheol;Xu, Chan;Kim, Si Hong;Kim, Dae Hoon;Kim, Jae Kyung;Heo, Jae Yun;Vu, Ngoc Thang;Choi, Ki Young;Kim, Il Seop
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.365-372
    • /
    • 2020
  • This study was conducted to compare the effects of foliar spray and sub-irrigation of the triazole fungicide diniconazole on the regulation of stem elongation and to investigate the stimulation of root system development during the seedling stage. Comparing the two application approaches, there were significant differences in the leaf area, leaf area ratio (LAR), plant height, compactness, fresh shoot and root production, relative growth rate (RGR), and root to shoot ratio (R/S). At the same application concentration, the sub-irrigation showed a better retarding effect on growth than the foliar spray, because the PGR activity of diniconazole in root absorption was higher than that in shoot absorption. For reaching a target of 20% to 30% inhibition rate of stem length, foliar application concentration of diniconazole exceeded 10, however, only approximately 1 was required in the sub-irrigation application. The root system of tomato seedlings responded strongly to diniconazole application. Total root length, root volume, root average diameter, and the number of root tips increased when diniconazole was sub-irrigation application at 1. A reduction in fine roots (diameter range of 0 to 0.3 mm) and an increase in the roots with a diameter range of 0.3 to 0.6 mm was observed, and this may contribute to the increase in average diameter. The increase in root average diameter may be positive because root penetration increases with root diameter. Our results suggested that sub-irrigation maximized the PGR activity of diniconazole to enhance the retarding effect. And it also possible to enhance the tomato seedling root system by diniconazole stimulating with a lower concentration.

Effects of Germanium Treatment during Cultivation of Soybean Sprouts (게르마늄 처리가 콩나물의 생장에 미치는 영향)

  • Kim, Eun-Jeong;Lee, Kyeoung-Im;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.615-620
    • /
    • 2002
  • This study was conducted to elucidate the characteristics of soybean sprouts cultured in water containing germanium. In three varieties of Eunhakong, Seomoktae and Subaktae, the yields of germanium soybean sprout were 10~20% more than those of control soybean sprouts after 5 day-cultivation. The hypocotyl of germanium soybean sprouts was thicker than that of control soybean sprouts, but there were no significant differences in the length of hypocotyl and the thickness of cotyledon. Germanium soybean sprouts showed deeper green and yellow color than control soybean sprouts. In addition, the hardness exhibited strongly in germanium soybean sprouts, especially Seomoktae. In the sensory evaluation, germanium soybean sprouts were better than control soybean sprouts in appearance, taste, flavor and preference.

A Development of Automation system and a way to use Solar Energy System Efficiently in Greenhouse(2) - Study on improvement of growth and yield of a cucumber in soil heating - (시설원예 태양열 시스템의 효율적 이용과 자동화 장치개발(2) -지중가온에 의한 오이 생육 및 수량성 향상에 관한 연구-)

  • 김진현;오중열;구건효;김태욱
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • Root zone temperature have influenced on protected cultivation in winter season. Especially root zone temperature is acted on limiting factor in crop cultivation. This study was conducted to obtain optimum temperature of root zone in Protected cultivation Root zone was warmed by heated water($28^{\circ}C$) flowing through the PPC pipe(${\phi}15$) buried depth 40 cm. And the flowing water was heated by solar system. Minimum air temperature during night time was set at $14^{\circ}C$ and maximum air temperature during day time was set at $28~30^{\circ}C$ the growing period of cucumber was from Nov. 6, 1996 to Jan. 30, 1997. The results are summarized as follows. 1. Average soil temperature at 15~20 cm depth was $22^{\circ}C$ at warming plots, $17~18^{\circ}C$ at non-warming plots 2. Early growth in leaf length, stem diameter, number of leaves and leaf area for 30 days after planting were accelerated by root zone warming. Especially, the grawing rate of soil warming plots was higher 27% in leaf length, 51% in leaf number, 150% in leaf area than non-warming Plots. Above-ground and underground part of warming plots was higher 117%, 56% than non-warming plots. 3. In total yield analysis, number of fruits were 614 in soil warming and 313 in non-warming plots. In the result, total yield of soil warming plots was increased with 196% than non-warming plots. 3. In total yield analysis. number of fruits were 614 in soil warming and 313 in non-warming plots. In the result. total yield of soil warming plots was increased with 196% than non-warming plots.

  • PDF

Antibiofilm Activity of Scutellaria baicalensis through the Inhibition of Synthesis of the Cell Wall (1, 3)-${\beta}$-D-Glucan Polymer (세포벽 (1,3)-${\beta}$-D-Glucan Polymer 합성의 저해로 인한 황금(Scutellaria baicalensis)의 항바이오필름 활성)

  • Kim, Younhee
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.88-95
    • /
    • 2013
  • Candida biofilms are self-organized microbial communities growing on the surfaces of host tissues and medical devices. These biofilms have been displaying increasing resistance against conventional antifungal agents. The roots of Scutellaria baicalensis have been widely used for medicinal purpose throughout East Asia. The aim of the present study was to evaluate the effect of S. baicalensis aqueous extract upon the preformed biofilms of 10 clinical C. albicans isolates, and assess the mechanism of the antibiofilm activity. Its effect on preformed biofilm was judged using an XTT reduction assay and the metabolic activity of all tested strains were reduced ($57.7{\pm}17.3$%) at MIC values. The S. baicalenis extract inhibited (1, 3)-${\beta}$-D-glucan synthase activity. The effect of S. baicalensis on the morphology of C. albicans was related to the changes in growth caused by inhibiting glucan synthesis; most cells were round and swollen, and cell walls were densely stained or ruptured. The anticandidal activity was fungicidal, and the extract also arrested C. albicans cells at $G_0/G_1$. The data suggest that S. baicalensis has multiple fatal effects on target fungi, which ultimately result in cell wall disruption and killing by inhibiting (1, 3)-${\beta}$-D-glucan synthesis. Therefore, S. baicalensis holds great promise for use in treating and eliminating biofilm-associated Candida infections.

Phytoremediation of diesel-contaminated soils using alfalfa (Alfalfa를 이용한 디젤오염토양의 phytoremediation)

  • 심지현;이준규;심상규;황경엽;장윤영
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 1999
  • In the past several years phytoremediation, defined as the use of plants for removing contaminants from media such as soils or water, has attracted a great deal of interest as a potentially useful remediation technology We attempted to assess the effectiveness of phytoremediation of diesel-contaminated soils in a green house. Screening test for selecting an appropriate plant was performed by observing the harmful effects of diesel dosage on the growth of 4 plants. Alfalfa was selected as a potentially useful plant among corn and barnyard grasses due to its high tolerance to the toxicity of diesel in growth. Bioremediation of the artificial diesel-contaminated soil packed in the PVC columns(0.3m in diameter $\times$ 1m in length) with air supplied, alfalfa planted, and alfalfa and air supplied was investigated for 100 days. The results of the column test showed plant effects on enhancing the biodegradation of diesel in the contaminated soils compared to the control column which had no plant. Injecting air to the columns during phytoremediation also showed additional effects on the removal rate of diesel. Comparison of microbial activity in each test column showed a beneficial effect of plants in the soil remediation processes. This results can be explained microbial activity in rhizosphere is a crucial factor for removing diesel.

  • PDF

Herbicidal Activity of Thiocarbamate Herbicides and Its Effect on Cell Division and Elongation (Thiocarbamate계(系) 잡초제(雜草劑)의 살초력(殺草力)과 세포분열(細胞分裂) 및 신장(伸長)에 미치는 영향(影響))

  • Chun, J.C.;Lee, C.K.;Ma, S.Y.
    • Korean Journal of Weed Science
    • /
    • v.15 no.1
    • /
    • pp.46-53
    • /
    • 1995
  • The herbicidal activity of thiocarbamate herbicides and its effect on cell division and elongation were determined. The herbicides studied were molinate(S-ethyl-N,N-hexamethylenethiocarbamate), dimepiperate [S-(${\alpha}$,${\alpha}$-di methylbenzyle)piperidine-1-carbothioate], esprocarb [S-benzyl-N-ethyl-N-(1,2-dimethylpropyl) thiocarbamate], and thiobencarb [S-(4-chlorobenzyl)-N, N-diethylthiocarbamate]. The herbicides applied at the rates ranged from $10^{-6}$ to $10^{-5}M$ did not affect germination and post-germination root growth of rice(Oryza sativa L.) and barnyardgrass [Echinochloa crus-galli(L.) P. Beauv.], but inhibited the post-germination shoot growth. There was no inhibition of gibberellin-induced ${\alpha}$-amylase biosynthesis in de-embryonated rice seeds by the herbicides at $10^{-5}M$, but about 50-60% inhibition occurred at $10^{-4}M$. When the herbicides were applied 7 days after seeding, the rates required to 50% growth inhibition of barnyardgrass were 146g, 91g, 96g, and 102g ai/10a for molinate, dimepiperate, esprocarb, and thiobencarb, respectively. No effect of the herbicides on cell division was found at $10^{-4}M$, but about 31 to 47% inhibition as compared with the untreated check was obtained by treatment of the herbicides at $10^{-3}M$. However, about 33 to 38% inhibition of cell elongation occurred at $10^{-5}M$ of the herbicides. They also inhibited IAA-induced cell elongation.

  • PDF