• Title/Summary/Keyword: 빅데이터 처리

Search Result 1,120, Processing Time 0.03 seconds

A Study for Big Data Analytics Platform with Raspberry Pi Cluster and Apache Spark (라즈베리 파이 클러스터와 아파치 스파크를 활용한 빅데이터 분석 플랫폼 연구)

  • Kim, Young-Sun;Park, Ji-Young;Yoon, Bo-Ram;Lee, Jung-Hyun;Yong, Hwan-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1272-1275
    • /
    • 2015
  • 최근 관심이 증대되고 있는 빅데이터 분석 및 처리를 위한 병렬분산처리 시스템은 대용량 서버가 필요하고 인프라 구축을 위해 고비용을 지불해야 한다. 이를 해결하기 위해 본 연구에서는 저렴한 라즈베리 파이로 클러스터를 구성하고, 하둡보다 빠른 속도의 처리를 제공하는 아파치 스파크를 분석 솔루션으로 하는 빅데이터 분석 플랫폼을 구축하였다. 구축한 플랫폼이 빅데이터 활용을 위해 적절한 성능을 보이는지 확인하기 위해 텍스트 마이닝을 수행하였고, 분석 결과 유효한 성능을 보였다. 적절한 비용으로 빅데이터 분석이 가능해지면서 중소기업과 개인, 교육 기관에서도 빅데이터 활용이 가능해지면서 활용 분야가 크게 확대될 것으로 보인다.

A Method to Access Data for Spatial Operation in Parallel Distributed Processing System (병렬 분산 처리 시스템에서 공간 연산을 위한 데이터 접근 방안)

  • Kim, Jindeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.442-444
    • /
    • 2016
  • 과거에 비해 비약적으로 생산되는 공간 데이터에 대한 처리를 위한 공간 연산은 빠른 처리 응답성을 요구하는 경우가 많다. 그래서 최근 하둡(Hadoop)과 같은 빅데이터 처리 시스템을 이용하여 처리하고자 하는 시도가 많다. 한편, 공간 조인은 데이터 분할(Partitioning)과 공간 색인의 이용 여부, 여과 단계와 정제 단계를 거치는 등 그 복잡도가 강한 공간 연산이다. 그래서 빅데이터 처리 시스템을 이용한 공간 조인의 처리 방식은 매우 다양하다. 그러나 지금까지 이러한 공간 조인의 처리 방식에 다른 리소스 활용에 대한 비교는 거의 없다. 이 논문에서는 다양한 공간 연산의 수행 방법에 따른 빅데이터 시스템 클러스터에서 데이터 전송 방식을 고찰하고 데이터 전송에 따른 네트워크 리소스의 효율적인 사용 방안을 제안하고자 한다. 구체적으로 단일할당과 다중할당 색인 기법의 비교, 파티셔닝 방법의 비교, 맵리듀스 시스템의 태스크 할당 방법에 따른 비교를 통해 다양한 연산 유형에 따른 공간 조인의 처리 방안 선정에 고려 요소를 제시하고자 한다.

  • PDF

Development of Big Data System for Energy Big Data (에너지 빅데이터를 수용하는 빅데이터 시스템 개발)

  • Song, Mingoo
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • This paper proposes a Big Data system for energy Big Data which is aggregated in real-time from industrial and public sources. The constructed Big Data system is based on Hadoop and the Spark framework is simultaneously applied on Big Data processing, which supports in-memory distributed computing. In the paper, we focus on Big Data, in the form of heat energy for district heating, and deal with methodologies for storing, managing, processing and analyzing aggregated Big Data in real-time while considering properties of energy input and output. At present, the Big Data influx is stored and managed in accordance with the designed relational database schema inside the system and the stored Big Data is processed and analyzed as to set objectives. The paper exemplifies a number of heat demand plants, concerned with district heating, as industrial sources of heat energy Big Data gathered in real-time as well as the proposed system.

Design and Implementation of Big Data Streaming Query Processing System for Realtime Power Plant Sensor data (실시간 발전소 시설 장비 센서 데이터에 대한 빅데이터 스트리밍 질의 처리 시스템 설계 및 구현)

  • Um, Jung-Ho;Yu, Chan Hee;Sarda, Komal;Park, Kyongseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.88-91
    • /
    • 2020
  • 발전 시설은 연간 무중단으로 운영되어야 하고, 고장이 발생하면 손해가 막대하기 때문에 발전 시설 장비에는 수십만 개의 센서 데이터가 설치되어 있다. 본 논문에서는 효율적인 센서 데이터의 수집과 시설 모니터링 및 고장 예측 등을 위한 빅데이터 스트리밍 질의 처리 시스템을 설계 및 구현하였다. 또한 실시간 데이터 수집의 효율적인 관리를 위해 인코딩 방식을 설계하였으며, 데이터 전송 성능을 측정하여 문자열로 데이터를 전송하는 것보다 평균 12%, 최대 32% 데이터 처리 성능이 향상됨을 보였다. 또한, 스트리밍 데이터에 대한 윈도우 질의 처리 성능을 측정하여 약 0.97초의 평균 집계 질의 처리 시간이 소요됨을 확인하였다. 향후에는 고장 감지를 위한 인공지능 추론 모델을 제안하는 빅데이터 스트리밍 질의 처리 시스템에 적용할 예정이다.

Study of In-Memory based Hybrid Big Data Processing Scheme for Improve the Big Data Processing Rate (빅데이터 처리율 향상을 위한 인-메모리 기반 하이브리드 빅데이터 처리 기법 연구)

  • Lee, Hyeopgeon;Kim, Young-Woon;Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.127-134
    • /
    • 2019
  • With the advancement of IT technology, the amount of data generated has been growing exponentially every year. As an alternative to this, research on distributed systems and in-memory based big data processing schemes has been actively underway. The processing power of traditional big data processing schemes enables big data to be processed as fast as the number of nodes and memory capacity increases. However, the increase in the number of nodes inevitably raises the frequency of failures in a big data infrastructure environment, and infrastructure management points and infrastructure operating costs also increase accordingly. In addition, the increase in memory capacity raises infrastructure costs for a node configuration. Therefore, this paper proposes an in-memory-based hybrid big data processing scheme for improve the big data processing rate. The proposed scheme reduces the number of nodes compared to traditional big data processing schemes based on distributed systems by adding a combiner step to a distributed system processing scheme and applying an in-memory based processing technology at that step. It decreases the big data processing time by approximately 22%. In the future, realistic performance evaluation in a big data infrastructure environment consisting of more nodes will be required for practical verification of the proposed scheme.

Analysis of Trend for BigData Processing Technology by DW Appliance (DW 어플라이언스를 통한 빅데이터 처리 기술 동향 분석)

  • Choi, Ro-Hwan;Park, Seok-Cheon;Sim, Bong-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.904-907
    • /
    • 2013
  • 최근 정보통신기술이 하루가 다르게 발전함에 따라 하루에도 수많은 데이터가 흘러나오는 최근의 추세이다. 정형 데이터 뿐 아니라 비정형 데이터 분석까지 진행하는 최근의 추세에 맞춰 현 빅데이터 기술 동향을 분석한다. 빅데이터 시대를 맞아 기존의 데이터웨어하우스(DW)와 발전된 데이터웨어하우스(DW) 어플라이언스에 대해 분석하고 향후 발전 전망과 방향을 제시한다.

A Practice of Nuclear Bigdata System for Machine Learning (기계학습을 고려한 원전 빅데이터 시스템)

  • Park, Jaekwan;Kim, TaekKyu;Jang, Gwi-Sook;Seong, SeungHwan;Koo, SeoRyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.515-517
    • /
    • 2021
  • 원전 빅데이터를 효율적으로 분석하고 수집된 데이터를 인공지능 서비스에 활용할 수 있도록 제공하기 위해서는 원전 데이터에 특화된 빅데이터 플랫폼이 필요하다. 단순히 시간 순으로 나열된 원시(Raw) 데이터는 의미있는 단위로 논리적으로 구분되어 관리될 필요가 있고, 사건/사고의 발생에 따른 분류가 필요하다. 뿐만 아니라, 다수의 데이터들을 분석하여 수천 개의 계측신호들 중에서 원하는 목적에 적합한 신호가 어떠한 것들인지를 찾아낼 수 있는 데이터 분석이 지원될 필요가 있다. 이는 기계학습 애플리케이션을 개발할 때 필수적인 고품질의 데이터 제공에 크게 기여할 수 있다. 본 연구에서는 원전 데이터를 효과적으로 처리하고 분석하기 위한 원전 데이터 전처리 및 분석 기술을 고안하고 이를 빅데이터 저장 인프라와 통합한 원전 빅데이터 처리 체계를 소개한다. 본 연구의 결과물은 본격적인 원전 빅데이터 시스템 구축 사업에 활용될 것으로 기대된다.

An Architecture for a Spatial Big-Data Management System on Hadoop (하둡기반 공간 빅데이터 저장 관리 시스템 구조)

  • Lee, Kang-Woo;Cho, Eun-Sun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.1-3
    • /
    • 2015
  • 본 논문에서는 하둡 환경상에서 개발 중인 공간 빅데이터 저장 관리 시스템의 구조를 설명한다. 본 시스템은 공간 센서 및 IoT의 등장으로 대용량화된 공간 데이터로 인한 기존 공간 정보 처리 시스템의 성능적 한계를 극복하기 위한 목적으로 개발 중이다. 본 시스템은 효과적인 대용량 데이터 처리를 위해 현재 활발히 연구되고 있는 빅데이터 처리 기술과 공간 정보 처리 기술을 접목하여, 대용량의 공간 정보를 수집, 저장 관리하는 기능을 제공한다. 또한 효과적인 공간 데이터의 접근을 위해 스크립트 언어 기반의 공간 정보 처리 언어를 제공하고, SQL 형식의 선언적 공간 정보 질의 처리 기능도 제공하기 위해 개발 중에 있다.

  • PDF

A Study on the Data Collection and Storage of Big Data Systems (빅데이터 시스템의 데이터 수집 및 저장에 관한 연구)

  • Park, Jihun;Kim, Gyunghwan;Jung, Eunsu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.48-51
    • /
    • 2017
  • 빅데이터는 저장되지 않았거나 저장되더라도 분석되지 못하고 버리게 되는 방대한 양의 데이터를 말한다. 실제로도 빅데이터는 페이스북, 트위터등의 소셜 네트워크에서 많이 발생하고 있는데, 이러한 방대한 데이터들을 어떻게 효율적으로 저장하고 분석하는지에 대한 관심이 많아지고 있다. 따라서 본 논문에서는 빅데이터의 개념, 빅데이터의 향후 동향과 이슈들에 대해 살펴보고, 빅데이터 시스템이 데이터를 수집하고 저장하는 것에 대한 고려할만한 사항들과 효율적인 해결방안에 대해 제시하였다.

Squall: A Real-time Big Data Processing Framework based on TMO Model for Real-time Events and Micro-batch Processing (Squall: 실시간 이벤트와 마이크로-배치의 동시 처리 지원을 위한 TMO 모델 기반의 실시간 빅데이터 처리 프레임워크)

  • Son, Jae Gi;Kim, Jung Guk
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.84-94
    • /
    • 2017
  • Recently, the importance of velocity, one of the characteristics of big data (5V: Volume, Variety, Velocity, Veracity, and Value), has been emphasized in the data processing, which has led to several studies on the real-time stream processing, a technology for quick and accurate processing and analyses of big data. In this paper, we propose a Squall framework using Time-triggered Message-triggered Object (TMO) technology, a model that is widely used for processing real-time big data. Moreover, we provide a description of Squall framework and its operations under a single node. TMO is an object model that supports the non-regular real-time processing method for certain conditions as well as regular periodic processing for certain amount of time. A Squall framework can support the real-time event stream of big data and micro-batch processing with outstanding performances, as compared to Apache storm and Spark Streaming. However, additional development for processing real-time stream under multiple nodes that is common under most frameworks is needed. In conclusion, the advantages of a TMO model can overcome the drawbacks of Apache storm or Spark Streaming in the processing of real-time big data. The TMO model has potential as a useful model in real-time big data processing.