Recently, analysis techniques to extract new meanings using big data analysis and various services using these analysis techniques have been developed. Among them, the transport is one of the most important areas that can be utilized about big data. However, the existing traffic route guidance system can not recommend the optimal traffic route because they use only the traffic information when the user search the route. In this paper, we propose a realtime optimal traffic route guidance system using big data analysis. The proposed system considers the realtime traffic information and results of big data analysis using historical traffic data. And, the proposed system show the warning message to the user when the user need to change the traffic route.
Big data is an emerging issue as large data which was impossible to be processed in the past is possible to be handled with the development of information and communication technology. Manufacturing is the most promising field that big data is applied such that there are abundant data available. It is important to improve an efficiency of manufacturing process for quality control and production efficiency because the processes from production design, sales, productions and so on are mixed intricately. This study proposes big data cloud service for manufacturing analysis using a big data technology and a process mining technique. It is expected for manufacturing corporations to improve a manufacturing process and reduced the cost by applying the proposed service. The service provides various analyses including manufacturing analysis and manufacturing duration analysis. Big data cloud service has been implemented and it has been validated by conducting a case study.
Proceedings of the Korea Contents Association Conference
/
2014.11a
/
pp.223-224
/
2014
최근 빅데이터 시대에 다가와서 소셜 네트워크 서비스(Social Network Service)가 중요한 정보 공유의 수단으로 발전함에 따라 그에 따른 예측분석, 동향분석, 이슈탐지 등이 증가하고 있으며, 콘텐츠 분야에서 빅데이터 기법 사례가 증가하는 추세이다. 모바일기기 보급이 빠르게 확산되면서 SNS 활성화와 함께 많은 양의 데이터가 증가하고 있으며, 인스타그램과 같은 해시태그 사용 가능 SNS 서비스에서 해시태그의 동시출현은 해시태그만의 연관성이 있음을 의미한다. 본 논문에서는 대상 SNS의 동시출현 해시태그를 분석하기 위해 발생되는 데이터를 가지고 현재 트렌드에 맞게 분석하여 정보를 제공하는 방법을 제시한다.
This study focus on a economic value of the Big Data technologies by real options model using big data technology company's stock price to determine the price of the economic value of incremental assessed value. For estimating stochastic process of company's stock price by big data technology to extract the incremental shares, Generalized Moments Method (GMM) are used. Option value for Black-Scholes partial differential equation was derived, in which finite difference numerical methods to obtain the Big Data technology was introduced to estimate the economic value. As a result, a option value of big data technology investment is 38.5 billion under assumption which investment cost is 50 million won and time value is a about 1 million, respectively. Thus, introduction of big data technology to create a substantial effect on corporate profits, is valuable and there are an effects on the additional time value. Sensitivity analysis of lower underlying asset value appear decreased options value and the lower investment cost showed increased options value. A volatility are not sensitive on the option value due to the big data technological characteristics which are low stock volatility and introduction periods.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.321-324
/
2023
본 연구는 광역시와 광역도 간의 개인적 요인과 건강수준 정도가 우울경험 여부에 영향을 미치는 변수의 중요도를 파악하고자 시도되었다. 본 연구의 자료는 질병관리청의 2021년 지역사회건강조사 데이터를 활용하였다. 광역시의 데이터는 4,602건을 이용하였고, 광역도는 19,545건의 데이터를 이용하였다. 자료 분석에 활용된 빅데이터는 R 4.3.0 for Windows를 활용하여 단어 빈도 분석과 machine learning기법인 Random Forest분석을 실시하였다. 연구결과, train 데이터와 test 데이터의 과적합(overfitting)의 문제는 발생하지 않았으며, machine learning 기법의 분류모델은 약 94% 수준으로 나타났다. 분석 결과 광역시와 광역도 간의 우울경험여부에 미치는 중요도가 각각 다르게 나타났다. 두 지역의 시민에게 미치는 우울경험의 원인을 다르게 접근함으로써 보다 더 효율적인 정책수립이 가능 할 것으로 판단된다.
고객을 세분화하여 맞춤화된 서비스를 제공하는 것은 고객 관계 관리에 있어 중요하다. 빅데이터 분석 기법과 기계 학습 등을 활용한 분석 기법의 발전은 더욱 세밀한 고객 세분화를 가능케 했다. 하지만 새로운 분석 기법을 기업에서 효과적으로 적용하는 것은 여러 어려움이 존재한다. 본 연구는 특히 국내 보험 산업에서 데이터 분석 기법을 활용해 더욱 향상된 고객 세분화를 수행할 수 있는 방법에 대해 논의한다. 이를 위하여 실제 보험 설계사와의 심층 인터뷰를 통해 국내 보험 회사의 현상을 파악하고, 이를 기반으로 보험 산업에서 활용할 수 있는 가이드라인을 제시하고자 한다.
Big data analysis is analyzed and used in a variety of management and industrial sites, and plays an important role in management decision making. The job competency of big data analysis personnel engaged in management analysis work does not necessarily require the acquisition of microscopic IT skills, but requires a variety of experiences and humanities knowledge and analytical skills as a Data Scientist. However, big data education by state-run and state-run educational institutions and job education institutions based on the National Competency Standards (NCS) is proceeding in terms of software engineering, and this teaching methodology can have difficult and inefficient consequences for non-technical majors. Therefore, we analyzed the current Big Data platform and its related technologies and defined which of them are the requisite job competency requirements for field personnel. Based on this, the education courses for big data analysis and visualization techniques were organized for non-technical-based majors. This specialized curriculum was conducted by working-level officials of financial institutions engaged in management analysis at the management site and was able to achieve better educational effects The education methods presented in this study will effectively carry out big data tasks across industries and encourage visualization of big data analysis for non-technical professionals.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.05a
/
pp.710-711
/
2015
최근 사이버 공격이사회, 국가적 위협으로 대두되고 있다. 최근 신종 악성코드에 의한 A.P.T 공격이 사회적으로 큰 혼란을 야기하고 있다. 이에 따라 기업 내에서 방화벽, IPS, VPN 등의 네트워크 보안 시스템의 통합 관리를 목적으로 하는 통합관제시스템(ESM)의 필요성이 제기되었다. 그러나 기존의 ESM의 방식은 외부에서 내부로 유입되는 트래픽만을 모니터링하는 네트워크 기반 공격 탐지기법을 사용하기 때문에, 외부 사이버 공격만을 차단할 수 있다는 한계점을 가지고 있다. 따라서 본 연구는 주요 IT 기반시설의 네트워크, 시스템, 응용 서비스 등으로부터 발생하는 데이터 및 보안 이벤트 간의 연관성을 분석하여 보안 지능을 향상시키는 빅데이터를 활용한 보안로그시스템을 제안한다. 본 연구에서 제안한 빅데이터를 활용한 보안로그시스템을 통해 분산 기반의 저장/처리 기술 적용하고자 한다.본 기술을 적용한 지능형 정보 분석 플랫폼 구성을 통해, 가용성과 확장성을 확보하여 통합적 보안 관제가 가능하도록 한다. 뿐만 아니라 기업 내로의 악성코드 유입, 감염(전파) 그리고 실시간 모니터링이 가능하여 고객 서비스 만족도가 향상되는 파급효과가 기대된다.
Yu, Seon Cheol;Choi, Won Wook;Shin, Dong Bin;Ahn, Jong Wook
Spatial Information Research
/
v.22
no.6
/
pp.13-21
/
2014
This study defines concept and service framework of Geo-Spatial Big Data(GSBD). The major concept of the GSBD is formulated based on the 7V characteristics: the general characteristics of big data with 3V(Volume, Variety, Velocity); Geo-spatial oriented characteristics with 4V(Veracity, Visualization, Versatile, Value). GSBD is the technology to extract meaningful information from Geo-spatial fusion data and support decision making responding with rapidly changing activities by analysing with almost realtime solutions while efficiently collecting, storing and managing structured, semi-structured or unstructured big data. The application area of the GSBD is segmented in terms of technical aspect(store, manage, analyze and service) and public/private area. The service framework for the GSBD composed of modules to manage, contain and monitor GSBD services is suggested. Such additional studies as building specific application service models and formulating service delivery strategies for the GSBD are required based on the services framework.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.429-429
/
2019
최근 들어 이상기후 등 다양한 환경적 요인으로 인해 국지적이고 집중적인 호우가 빈발하고 있으며 도로상의 교통체증과 도로재해가 사회적으로 큰 문제가 되고 있다. 이러한 문제를 해결하기 위해서는 실시간, 단기간 이동성 강우정보 기술과 도로 기상정보를 활용할 수 있는 방법에 대한 연구가 필요하다. 본 연구는 차량의 AW(AutoWiping) 기능을 위해 장착된 강우센서를 이용하여 강우정보를 생산하는 기술을 개발하고자 하였다. 강우센서는 총 4개의 채널로 이루어져있고, 초당 250개의 광신호 데이터를 수집하며, 1시간이면 약 360만 개의 데이터가 생산되게 된다. 5단계의 인공강우를 재현하여 실내 인공강우실험을 실시하고 이를 통해 강우센서 데이터와 강우량과의 상관성을 W-S-R관계식으로 정의하였다. 실내실험데이터와 비교하여 외부환경 및 데이터 생성조건이 다른 실외 데이터의 누적값을 계산하기 위해 Threshold Map 방식을 개발하였다. 강우센서에서 생산되는 대량의 데이터를 이용하여 실시간으로 정확한 강우정보를 생산하기 위해 빅 데이터 처리기법을 사용하여 계산된 실내 데이터의 Threshold를 강우강도 및 채널에 따라 평균값을 계산하고 $4{\times}5$ Threshold Map(4 = 채널, 5 = 강우정보 사상)을 생성하였고 강우센서 기반의 강우정보 생산에 적합한 빅데이터 처리기법을 선정하기 위하여 빅데이터 처리기법 중 Gradient Descent와 Optima Rainfall Intensity을 적용하여 분석하고 결과를 지상 관측강우와 비교검증을 하였다. 이 결과 Optima Rainfall Intensity의 적합도를 검증하였고 실시간으로 관측한 8개 강우사상을 대상으로 강우센서 강우를 생산하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.