인공지능 기법들은 특히 영상분류(image classification), 객체탐지(object detection), 영상분할(image segmentation)에 효과적으로 사용되고 있다. 특히, 딥러닝(deep learning)은 최근 컴퓨팅 파워의 증대와 함께 깊고 두터운 네트워크 구성이 가능해지고 보다 효율적인 활성함수(activation function)와 옵티마이저(optimizer)를 활용한 특징맵(feature map)의 생성을 통해 상당히 높은 정확도를 도출할 수 있다. 본고에서는 최근 다양한 원격탐사 분야에서 활용성이 확대되고 있는 딥러닝 영상인식 기법인 Convolutional Neural Network (CNN) 기반 모델 및 Transformer 기반 모델에 대한 기술동향 및 사례연구를 검토하고, 우리나라에서 이들 기법의 활용방안 및 발전방향 등을 제시하고자 한다. 향후 원격탐사 기반의 재난 상황 대응을 위해서는 위성영상의 적시성 확보와 실시간 딥러닝 처리, 그리고 위성, 드론 및 Closed-circuit Television (CCTV) 영상이 함께 활용되는 영상 빅데이터 플랫폼도 개발되어야 할 것이다.
딥러닝 기술은 빅데이터 및 컴퓨팅 파워를 기반으로 최근 영상의학 분야의 연구에서 괄목할만한 성과를 이루어 내고 있다. 하지만 성능 향상을 위해 딥러닝 네트워크가 깊어질수록 그 내부의 계산 과정을 해석하기 어려워졌는데, 이는 환자의 생명과 직결되는 의료분야의 의사결정 과정에서는 매우 심각한 문제이다. 이를 해결하기 위해 "설명 가능한 인공지능 기술"이 연구되고 있으며, 그중 하나로 개발된 것이 바로 어텐션(attention) 기법이다. 본 종설에서는 이미 학습이 완료된 네트워크를 분석하기 위한 Post-hoc attention과, 네트워크 성능의 추가적인 향상을 위한 Trainable attention 두 종류의 기법에 대해 각각의 방법 및 의료 영상 연구에 적용된 사례, 그리고 향후 전망 등에 대해 자세히 다루고자 한다.
This study aims to provide preliminary data capable of suggesting directivity of an initiating start by understanding consumer awareness through analysis of SNS social big data on marine sports. This study selected windsurfing, yacht, jet ski, scuba diving and sea fishing as research subjects, and produced following results by setting period of total 1 month from January 22 through February 22, 2017 on the SNS (twitter, blog) through the Social MatrixTM service of Daumsoft Co., Ltd., and analyzing frequency of mention, associated words etc. First, sports that was mentioned the most out of marine sports was yacht, which was 3,273 cases on twitter and 2,199 on blog respectively. Second, the word which was shown the most associated with marine sports was the attribute showing unique characteristic of marine sports, which was 6,261 cases in total.
본 연구에서는 국내 외 4차 산업혁명 관련 기술 분야의 연구 동향을 분석하기 위해서 웹 기반의 텍스트 마이닝 및 소셜 네트워크 분석 기법을 이용하였다. 이를 위해 2014년 1월 1일부터 2018년 12월 31일까지 국내 외 4차 산업혁명 관련 기술에 대한 연구 논문 및 보고서의 제목 텍스트와 날짜를 대상으로 하여 텍스트 마이닝을 수행하였다. 이후 개념적인 차원에서의 키워드 간 연관성을 분석하기 위해서 형태소 분석을 통한 대표 키워드를 도출하였다. 이후 사회 연결망 분석을 활용하여 핵심 키워드 및 연관 키워드 등을 도출하였다. 그 결과, 우리나라에서는 4차 산업혁명 기술 관련 연구 개발 및 법 제도적 완화 등에 대한 초점을 두고 있다고 유추할 수 있다. 반면, 국외는 단위 서비스 형태로의 접근을 통해 도시에 대한 실질적 적용 기술에 초점을 두고 있음을 파악할 수 있었다.
본 연구의 목적은 1차 교육과정부터 2015 개정 교육과정까지의 가정과 교육과정을 시기별로, 통시적으로 살펴보는 것이다. 이를 위해 빅데이터 분석에서 사용되는 텍스트 마이닝 기법을 이용하여 교육과정을 분석하였다. 분석대상은 국가교육과정정보센터에서 수집한 1차 교육과정부터 2015 개정 교육과정까지의 10개의 교육과정 원문이며, 분석도구는 R 프로그램을 사용하였다. 연구결과 첫째, 4차 교육과정부터 2015 개정 교육과정까지 데이터 수가 점차적으로 늘어나는 것으로 나타났다. 둘째, 교육과정 시기별 핵심 개념을 추출하여 비교한 결과 교육과정에 따라 유지 및 변화되는 핵심 개념이 있었다. '생활', '가정'은 교육과정 변화에 상관없이 지속되는 핵심 개념이었으며, 2007 개정 교육과정 이후로는 '문제', '능력', '해결', '실천'이 강조되었다. 셋째, 핵심 개념 연결망 분석 결과를 통해 각 가정과 교육과정 마다 핵심 개념 간의 관계를 점(node)과 선(line)으로 표현하였다. 그 결과 '생활'과 '가정'을 중심으로 시대별로 강조한 핵심 개념이 강하게 연결됨을 확인할 수 있었다. 이와 같은 결과를 통해, 향후 가정과 교육의 방향성과 정체성을 형성하기 위한 기초 자료를 제공한다는 측면에서 본 연구의 의의가 있다.
본 연구는 텍스트마이닝 기법을 중심으로 빅데이터 분석을 활용하여 대전시 공공도서관에 대한 이용자의 인식과 경험을 살펴보고자 수행되었다. 이를 위하여 첫째, 소셜미디어에 나타난 이용후기 데이터를 수집하여 대전시 공공도서관에 대한 이용자들의 전반적인 인식과 평가를 탐색하였다. 둘째, 온라인 뉴스 기사 분석을 통해 사회적으로 논의되고 있는 현안을 파악하였다. 분석 결과, 첫째로 어린이 동반 이용자 비중의 높다는 것과 다음으로 LDA 분석을 통한 토픽이 '문화행사/프로그램', '자료 이용', '물리적 환경 및 시설', '도서관 서비스'의 네 가지 분류로 나타난다는 것, 마지막으로 뉴스기사 데이터에 도서관 및 복합문화공간 추가 건립과 도서관 협력 체계 구축에 대한 키워드가 핵심적으로 등장한다는 것을 확인하였다. 이를 바탕으로 지역 균형을 고려한 공공도서관 건립과 육아 및 보육 기관과의 업무협약을 통한 사회적 육아공동체 네트워크 조성을 제안하였다. 본 연구를 활용하여 대전시 공공도서관의 정책적·사회적 흐름을 알아보고 지역사회 수요를 반영하는 공공도서관 운영을 데이터에 기반하여 실행할 수 있기를 기대한다.
정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.
본 연구에서는 한국문화관광연구원에서 조사된 "2013년~2015년 외래 관광객 실태조사"의 약 36,000개 데이터에 대한 빅 데이터 분석을 통해 관광산업 활성화 방안을 도출해 보고자 한다. 이를 위해서 외래 관광객들의 '전반적 만족도', '재방문 의사', '추천의사' 변수에 가장 많은 영향을 끼치는 요인을 분석하고 해당 요인들의 각각에 대한 영향력에 대해 파악 하였다. 본 연구에서는 SPSS IBM Modeler 16.0의 의사결정나무(C5.0, CART, CHAID, QUEST), 인공신경망, 로지스틱 회귀분석의 데이터마이닝 기법을 이용하여 종속변수에 가장 큰 영향을 미치는 상위 변수 7개씩을 각각 도출하였고, 추가적으로 각 독립변수들의 영향력을 심도 있게 파악하기 위하여 R프로그래밍을 활용하여 SPSS IBM Modeler 16.0을 통해 도출된 각 독립변수들의 영향력을 파악하였다. 데이터 분석 결과 '전반적 만족도'에 가장 영향을 미치는 상위 변수 7개는 관광지매력도, 음식만족도, 숙박만족도, 교통수단만족도, 안내서비스만족도, 방문관광지수, 국가로 나타났으며 가장 큰 영향력을 미친 변수는 음식만족도와 관광지매력도로 분석되었다. '재방문 의사'에 가장 영향을 미치는 상위 변수 7개로는 국가, 여행 동기, 활동, 음식만족도, 제일 좋았던 활동, 관광안내서비스만족도, 관광지매력도로 나타났으며 그중 가장 큰 영향력을 미친 변수는 음식만족도와 여행 동기로 분석되었다. 마지막으로 '추천의사'에 영향을 미치는 상위 변수 7개로는 국가, 관광지매력도, 방문관광지수, 음식만족도, 활동, 관광안내서비스만족도, 비용으로 나타났으며 가장 큰 영향력을 미친 변수는 국가, 관광지매력도, 음식만족도로 분석되었다. 따라서 세 변수에 공통적으로 영향을 끼치는 요인은 음식만족도, 관광지매력도로 분석되었으며 해당 요인들이 공통적으로 한국여행에 대한 전반적 만족도와 재방문 의사, 추천의사에 미치는 영향이 크다는 것을 확인할 수 있었다. 본 연구는 외래 관광객들의 한국관광에 대한 활성화 방안을 "외래 관광객 실태조사" 빅 데이터 분석을 통해 규명함으로써 한국 관광 데이터 분석의 활용과 관광 정책 수립의 기초자료로 활용될 수 있을 것으로 기대되며 향후 기업 및 국가차원에서 한국 관광발전에 기여할 수 있는 활성화 방안을 마련하는 자료로 사용될 수 있을 것으로 기대한다.
본 논문은 빅 데이터 분석기법을 이용하여 한국농수산대학 학생들의 대학생활 요소에 대한 선호도를 연구하기 위하여 비정형 데이터 분석기법으로서 감성 분석(opinion mining) 기법과 텍스트 마이닝 기법을 활용하였다. 분석도구로는 RStudio를 이용하였으며, 긍정과 부정의 감성을 분류하고 선호도를 평가하기 위한 긍정어 사전과 부정어 사전을 새롭게 작성하여 프로그래밍하였다. 비정형 텍스트에 대한 분석 결과는 도표와 워드 클라우드를 이용한 시각화 자료로 나타내어 정보를 추출하였다. 학교생활 요소로는 '나의 현재', '10년 후 모습', '교우관계', '한농제(대학 축제)', '후생관(식사)', '청학관(기숙사)', '한농대', '장기현장실습' 등 학생들에게 밀접한 8가지 주제를 대상으로 하였다. 분석 결과 한농대 학생들은 '후생관 식사'과 ' 교우관계'의 주제에 대해서 85% 이상의 긍정적 감성을 나타냈으나 '장기현장실습'과 '청학관(기숙사)'에 대해서는 긍정적 감성이 60%를 넘지 않는 만족도를 갖는 것으로 나타났다. 그리고 '나의 현재', '10년 후 모습', '한농제(대학 축제)' 및 'KNCAF' 등의 주제에 대해서는 69.3~74.2% 정도의 긍정적 감성을 나타냈다. 남녀 학생별 차이를 보면 '나의 현재', '10년 후 모습', '교우관계', '청학과(기숙사)' 및 '장기현장실습' 주제에서는 남학생의 긍정적 감성이 높게 나타났으며, '한농제(대학 축제)', '후생관' 및 '한농대' 주제에서는 여학생의 긍정적 감성이 높게 나타났다. 전공별 특징을 살펴보면 학생들은 '현재'나 '10년 후'의 자신의 모습에 대하여 71% 이상 긍정적 자신감을 지니고 있는 것으로 나타났다. 특히 축산계열 학생들의 긍정적 감성이 높게 나타났으며, 화훼학과 학생들은 다른 전공의 학생들에 비하여 긍정적 감성이 낮게 나타나 자신감이 부족한 결과를 보였다. '교우관계'에 대해서는 화훼학과를 제외하고 80% 이상의 긍정적 감성을 나타냈으며, 중소가축학과 학생들은 93%를 초과하는 적극적인 교우관계를 맺고 있는 것으로 나타났다. 대학 축제인 '한농제'에 대하여 전체 학생들의 긍정적 감성은 약 70% 정도이나 과수학과와 수산양식학과 학생들의 호감도는 60% 미만으로 축제에 대한 부정적 이미지가 높게 나타났다. '후생관 식사'에 대한 전체 학생들의 긍정적 감성은 85%를 넘어 매우 높은 만족도를 나타냈으나 수산양식학과 학생(남학생)들의 만족도는 매우 낮게 나타났다. 모든 학생들이 공동생활을 하는 '청학관'에 대한 학생들의 호감도는 59.5%로 낮게 나타났으며, 과수학과와 수산양식학과 학생들의 만족도는 약 42% 미만으로 더욱 부정적인 감성을 나타냈다. 또한 자신들이 3년간 학업을 재학한 한농대에 대해서는 74% 이상이 긍정적인 평가를 하는 것으로 나타났다. 특히 학생들의 호감도가 가장 낮게 나타난 장기현장실습에 대한 화훼학과, 채소학과, 중소가축학과 학생들의 호감도는 50%를 넘지 않는 매우 부정적 감성을 나타냈다. 빅 데이터 분석 결과를 쉽게 이해할 수 있도록 시각적으로 표현하기 위하여 텍스트 마이닝 기법으로 구조화되지 않은 텍스트에서 주요 단어를 긍정어와 부정어로 나누어 추출하고 그 단어들의 word cloud를 작성하여 학생들의 감성을 시각화하였다. 한농대는 학생들에게 지금보다 더욱 긍정적인 감성을 가지고 밝고 환한 말, 힘이 되고 용기를 주는 말, 사람을 기쁘게 하는 말을 많이 할 수 있도록 여건을 제공함으로써 학생들은 삶의 활기가 넘치고 성공적인 인생을 살아가는 행복을 만들 수 있으리라 여겨진다.
이 연구에서는 기혼자의 연애를 소재로 하는 최근 드라마에 대한 빅데이터 분석을 수행하여 현대인의 연애관의 변화에 대해 살펴보았다. 정 반대의 서사적 지향을 지닌 드라마 두 편을 선정하여 각각 드라마 종영 후부터 1개월 기간에 대한 시청자들의 공감도를 텍스트 마이닝과 감성 분석 기법을 사용하여 분석하였는데, 그 결과 현대 한국 사회에서 기혼자의 연애에 대한 생각이 변화하고 있다는 결론을 얻었다. 특히 가정의 의미 변화가 확인되는데, 가정은 '남편과 아내라는 사회적 역할을 수행하는 곳'이 아니라, '진정한 교감과 위안을 나눌 수 있고 개인이 행복해야 하는 곳'으로 그 의미가 변화했다고 볼 수 있다. 개인이 행복하지 않다면, 가정을 깨뜨리는 일도 필요하다는 결론이 가능한 것이다. 이런 맥락에서 현대의 이혼율과 이에 대한 문제도 고구되어야 할 것으로 보인다. 그러나 구글 트렌드 검색을 통하여 살핀 결과, 현대 한국 사회에서는 여전히 연애보다 결혼에 대한 관심도가 훨씬 높음을 알 수 있었다. 현대 한국사회에서 아직까지는 '연애를 위한 연애' 곧 '결혼을 목표로 하지 않은 연애'를 선호하고 있지 않음을 뜻한다. 결혼에 비해 연애에 대해 관심이 적은 것이라기보다, 진정한 사랑을 전제로 결혼이 이루어져야한다는 인식이 반영된 결과로 해석할 수 있다. 이와 같은 연구는 소셜미디어를 통한 트렌드 변화 연구에 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.