전통적인 마이닝 기법은 다양한 디지털 매체와 센서 등에서 생산되는 빅데이터를 처리하기 어려울 뿐 아니라 신규 데이터 누적시 전체 데이터를 재분석 해야하는 비효율성과 대용량의 문서를 학습함에 있어 메모리부족 문제, 학습 소요시간 문제 등이 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 자질축소 기법에 의존하지 않고 대량의 문서를 자유롭게 학습하고 부분적인 자질 추가 변경 시에 변경요소만을 추가 반영할 수 있는 범용적이고 일반적인 분류기의 구조설계 방법을 설계 및 구현하였다. 점진적 학습 모듈은 일반적인 학습 방법이 데이터의 추가 및 변동시마다 모든 데이터를 재학습하는 데 반해, 기존의 학습 결과에 증분된 데이터만 재처리 없이 추가적으로 학습한다. 재학습을 위해 사용자는 작업 수행 중 자원 관리를 통해 기존에 처리된 데이터를 자유롭게 가져와서 새로운 데이터와 병합이 가능하다. 이러한 점직적 학습 효율성은 빅데이터 기반 데이터 처리에 주요한 특성인 데이터 생산 속도를 극복하기 위한 좋은 대안이 될 수 있음을 확인하였다.
스마트폰 보급의 확산과 데이터 저장 및 분석 기법의 발전은 빅데이터 관련 산업을 미래의 유망 산업으로 탈바꿈하게 만들었다. 마케팅 분야에서는 소셜 데이터를 분석하여 소비자의 니즈를 파악하고, 효과적인 마케팅의 수단으로 활용하고 있다. 빅데이터 분석이 불가능했던 시대에는 소비자를 이해하기 위해서는 소수의 소비자를 대상으로 하는 조사 및 실험에 의존할 수밖에 없었으며, 이러한 전통적인 시장조사 방법은 현재도 활용되고 있다. 빅데이터 분석과 전통적인 조사방법 모두 고객을 이해하는 중요한 방법이기는 하지만, 두 가지 방법을 통해 도출된 결과가 소비자의 트랜드에 대하여 유사한 시사점을 주는지는 확인할 필요가 있다. 이러한 점에서 본 연구에서는 화장품 브랜드를 대상으로 소셜 데이터 분석 결과와 소비자를 대상으로 하는 설문조사의 결과를 비교하고자 하였다. 연구 결과 두 가지 방법 모두 유사한 시사점을 제공하는 것으로 나타났다.
본 연구에서는 상수관망에 설치된 유량, 압력 센서를 통해 취득한 빅데이터에 대해 데이터마이닝 기법을 활용하여 해당 공급권역의 특성을 파악하고 그 정보에 기반하여 상수 공급에 있어서 유의할 점 등을 도출해보고자 하였다. 또한, 상수 사용에 대한 단기 수요예측을 수행하는데 있어서도 통계적 방법인 다중회귀분석과 데이터마이닝의 인공신경망 기법을 비교하여 좀 더 정확한 수요예측을 할 수 있는 모델을 제시해보고자 하였다. 데이터 수집과 테스트를 위하여 지자체 한 군의 소블록 지역을 대상으로 선정하였다. 해당 지역은 가정용 수요 외에도 관공서, 병원 등의 대형 업무용 수요도 일부 존재하고 있는 지역이다. 해당 지역의 센서를 통해 취득되는 연속 발생 데이터를 수집하였다. 이런 방식을 통해 취득된 데이터는 총 2,728건이며 이 중 2,632건은 예측모델을 생성하는데 96건은 예측모델의 예측력을 테스트 하는 데에 활용하였다. 이러한 테스트를 수행한 결과 상수 수요예측에 있어서 인공신경망이 다중회귀분석에 비교하여 더 좋은 예측율을 보였다.
ITS(Intelligent Transport Systems)는 시민들의 교통이용 안전과 편의를 도모하고 교통 시스템의 효율적인 운영 및 관리를 위해 대도시를 중심으로 도입되었다. 우리나라의 경우 ITS가 전국적으로 확대되면서 도로소통상황, 교통량, 대중교통운영현황 및 관리상황, 대중교통이용현황 등 다양한 교통정보가 생성되고 있다. 본 논문에서는 ITS에서 수집되는 데이터 중 하나인 DSRC(Dedicated Short Range Communications) 빅데이터를 활용하여 도시 교통구조를 네트워크 분석 기법을 통해 규명한다. 이를 통해 도심에서의 복잡한 교통현상을 단순화시키고, 차량 흐름에 따른 도시 교통의 구조적 특징을 도출한다. 분석 결과는 도시의 교통을 좀 더 쉽게 이해할 수 있도록 도와주고, 향후에 도시교통의 혼잡 해소방안, 도로 확장 계획 등의 교통정책 수립시 기초연구 자료로 활용할 수 있다.
Journal of the Korean Data and Information Science Society
/
제25권1호
/
pp.97-106
/
2014
빅 데이터 기술의 발전은 다변화된 현대 사회를 보다 정확하게 예측하고 효율적으로 작동하도록 정보를 제공하는 동시에 과거에는 불가능 했던 기술을 가능케 하였다. 이러한 빅 데이터 분석 기법은 국가 차원에서의 사회, 경제, 정치, 문화, 과학 기술 등 여러 분야에 활용될 수 있다. 빅 데이터 분석을 위해서는 먼저 데이터 마이닝 기술로 방대한 양의 데이터 속에서 가치 있는 정보를 찾는 것이 선행 되어야 하는데, 빅 데이터와 관련된 데이터 마이닝 기법으로는 텍스트 마이닝, 평판 분석, 군집 분석, 연관성 규칙 등이 있다. 본 논문에서는 데이터 마이닝 기법 중에서 많이 활용되고 있는 연관성 규칙의 평가 기준으로 코사인 순수 신뢰도를 제안한 후, Piatetsky-Shapiro가 제안한 흥미도 측도의 기준에 대한 충족여부를 점검하는 동시에 여러 가지 특성을 살펴보았다. 또한 예제를 통하여 고찰한 결과, 기존의 신뢰도와 코사인 유사성 측도는 모두 양의 값을 가지므로 연관성의 방향을 알 수 없어서 그 값만으로는 양의 연관성이 있는지 아니면 음의 연관성이 있는지를 알 수 없었다. 그러나 본 논문에서 제안한 코사인 순수 신뢰도는 그 부호에 의해 연관성 규칙의 방향을 알 수 있으므로 신뢰도와 코사인 유사성 측도가 가지고 있는 약점을 보완할 수 있는 측도라는 사실을 확인하였다.
최근 증가하는 콘텐츠 제공 서비스의 가장 큰 특징은 콘텐츠의 시간의 흐름에 따른 콘텐츠 증가량이 매우 크다는 것이다. 이에 따라 사용자 큐레이션의 중요성이 같이 증가하고 있으며 이를 구현하기 위한 여러 가지 기법들이 사용되고 있다. 본 논문에서는 영상 추천을 위한 기법 중 음성데이터 및 자막을 활용한 분석 기법과 키프레임 추출 기반 영상 비교 기법을 실제 빅데이터 영상 콘텐츠를 대상으로 구현, 적용한 결과에 대하여 비교한다. 또한, 비교결과를 통해 각 분석 기법이 적용될 수 있는 영상 콘텐츠 환경에 대하여 제안한다.
본 연구는 빅데이터와 인공지능을 활용하여 축구선수의 연봉등급을 예측하는 새로운 방법을 제안한다. 축구선수의 연봉 예측은 선수의 성과와 잠재력을 정확하게 평가하고, 이를 연봉에 반영함으로써 축구 산업의 경제적 효율성을 높이는 중요한 과제이다. 본 연구는 FIFA 22에서 제공하는 선수 능력치 데이터를 분석하여, 다양한 빅데이터 및 인공지능 기법을 통해 선수의 연봉등급을 예측한다. 주요 연구 방법으로는 의사결정나무, 인공신경망, 랜덤 포레스트, 부스팅 등을 활용하였으며, 이를 통해 연봉등급을 예측하는 모델의 정확도를 비교 분석하였다. 연구 결과, 랜덤 포레스트와 부스팅 기법이 가장 높은 예측 정확도를 보였다. 이 연구는 빅데이터와 인공지능을 이용해 축구선수의 연봉등급을 예측하고, 축구 산업에 새로운 관점을 제공한다.
최근 기후변화 및 사회구조 변화에 따라 신종 또는 복합재난 발생빈도가 증가하고 있으며 재난예방의 중요성이 증가하고 있다. 중앙 및 지방정부에서의 재난예방활동 중 가장 대표적인 시설 안전관리에 대한 유용한 정보를 제공하기 위해 국민안전처의 "안전신문고" 주요처리사례 데이터를 활용하여 주민이 신고한 위험시설 신고내용의 키워드를 파악하여 시설간 계절 및 지역별 신고 분포 현황을 분석하였다. 이를 위해 사회 연결망 분석기법을 활용하여 시설 키워드를 중심으로 1-mode, 2-mode를 구성하였으며 계절별, 지역별로의 분포 차이를 분석하였다.
정보통신기술의 발달과 더불어 게임 산업이 성장하면서 유저의 게임데이터는 다양한 플레이 및 옵션에 따라 초 단위로 기록되며 방대한 양의 게임데이터를 빅데이터 기반으로 분석할 수 있게 되었다. 비즈니스와 결합하여 다양한 분야에서 수익창출을 위한 새로운 가치를 발견하는 것에 빅데이터를 활용하고 있지만, 게임 산업에서의 빅데이터 활용은 미흡한 실정이다. 본 연구에서는 리그오브레전드의 게임데이터를 이용하여 라인 별 승패예측모형을 구축한 뒤 세분화 된 라인의 특성을 반영한 변수 중요도를 도출하여 일반 게임유저가 승률을 올리기 위해 전적검색사이트를 이용하여 사전에 팀 구성원에 대한 정보를 제공받을 수 있도록 한다.
인공지능과 빅데이터 분석을 위해 웹 스크래핑으로 수집된 대부분의 텍스트 데이터들은 일반적으로 대용량이고 비정형이기 때문에 빅데이터 분석을 위해서는 정제과정이 요구된다. 그 과정은 휴리스틱 전처리 정제단계와 후처리 머시인 정제단계를 통해서 분석이 가능한 정형 데이터가 된다. 따라서 본 연구에서는 후처리 머시인 정제과정에서 한국어 딕셔너리와 불용어 딕셔너리를 이용하여 워드크라우드 분석을 위한 빈도분석을 위해 어휘들을 추출하게 되는데 이 과정에서 제거되지 않은 불용어를 효율적으로 제거하기 위한 "사용자 정의 불용어 시소러스" 적용에 대한 방법론을 제안하고 R의 워드클라우드 기법으로 기존의 "불용어 딕셔너리" 방법의 문제점을 보완하기 위해 제안된 "사용자 정의 불용어 시소러스" 기법을 이용한 사례분석을 통해서 제안된 정제방법의 장단점을 비교 검증하여 제시하고 제안된 방법론의 실무적용에 대한 효용성을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.