• Title/Summary/Keyword: 비행 제어 시스템

Search Result 536, Processing Time 0.024 seconds

A Study on the Flight Control Law and the Dynamic Characteristic about Variation of Feedback Gains of T-50 Lateral-Directional Axis (T-50 가로-방향축 비행제어법칙 설계 및 궤환이득의 변화에 따른 항공기 동특성에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kang Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.621-630
    • /
    • 2006
  • The T-50 advanced trainer aircraft combines advanced aerodynamic features and a fly-by-wire flight control system in order to produce a stability and highly maneuverability. The flight control system both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 employs the RSS concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. This paper details the design process of developing lateral-directional control laws, utilizing the requirement of MIL-F-8785C and MIL-F-9490D. And, this paper propose the analysis of aircraft characteristics such as dutch-roll mode, roll mode, spiral mode, gain and phase margin about gains for lateral-directional inner loop feedback.

Design of Autolanding Guidance and Control Algorithm Using Singular Perturbation (특이섭동법을 이용한 비행체 자동착륙 유도제어 알고리즘 설계)

  • Ha, Cheol-Keun;Choi, Hyoung-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.726-732
    • /
    • 2005
  • This paper proposes an autolanding guidance and control algorithm with the lateral guidance law. This algorithm is basically formulated and designed in feedback linearization based on singular perturbation. Main features of this algorithm are two facts. One of those is that when a certain situation happens that airplane must realign to the runway suddenly assigned due to unexpected environment change around the landing site, the heading guidance in this algorithm is very valuable, and the other is the fact that the inner loop control of this algorithm is able to be designed directly based on the Handling Quality Requirements that most flight control systems must be satisfied with. To illustrate the potential of this algorithm, 6-DOF nonlinear simulation based on the nonlinear airplane model shown in Ref.[11] is carried out. The simulation results showed that the altitude response to the given landing trajectory is accurate, and the airplane heading alignment to the assigned runway from the lateral deviation is successful. It is noted that this algorithm is also applicable to unmanned aerial vehicle, which can be retrieved in autolanding technique, where the runway far retrieving the vehicle is in any direction for example at war field.

Implementation of Multilateral Control System for Small UAV Control-Focused on Design (소형 무인기 통제를 위한 다자간 방식 관제시스템 구축방안-설계 중심으로)

  • Choi, Hyun-Taek;Kim, Seok-Kwan;Ryu, Gab-Sang
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.65-71
    • /
    • 2017
  • In this paper, we propose a design method for the construction of LTE-based small unmanned aerial vehicle control system to quickly and reliably collect multiple small unmanned aerial vehicle position information simultaneously flying all over the country. In particular, the main requirements are the network (N/W), hardware (H/ W), software(SW), Database(DB), development architecture, and business needs. To satisfy these requirements, N/W, H/W, SW, DB design, and architectural design plan were suggested regarding the design requirements of a small UAV system. To effectively control the small unmanned multi-party system in the system design, the architecture is divided into the front-end service area and the back-end service area according to the function and role of the unit system. In the front-end service area that grasps and controls the position and state of small unmanned aerial vehicles (UAVs), we have studied the design part that can be expanded to N through TCP/IP network by applying Client PC method.

Flight Technical Error Modeling for UAV supported by Local Area Differential GNSS (LADGNSS 항법지원을 받는 무인항공기의 비행 기술 오차 모델링 기법)

  • Kim, Kiwan;Kim, Minchan;Lee, Dong-Kyeong;Lee, Jiyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1054-1061
    • /
    • 2015
  • Navigation accuracy, integrity, and safety of commercial Unmanned Aerial Vehicle (UAV) is becoming crucial as utilization of UAV in commercial applications is expected to increase. Recently, the concept of Local-Area Differential GNSS (LADGNSS) which can provide navigation accuracy and integrity of UAV was proposed. LADGNSS can provide differential corrections and separation distances for precise and safe operation of the UAV. In order to derive separation distances between UAVs, modeling of Flight Technical Error (FTE) is required. In most cases, FTE for civil aircraft has been assumed to be zero-mean normal distribution. However, this assumption can cause overconservatism especially for UAV, because UAV may use control and navigation equipments in wider performance range and follow more diverse path than standard airway for civil aircraft. In this research, flight experiments were carried out to understand the characteristics of FTE distribution. Also, this paper proposes to use Johnson distribution which can better describe heavy-tailed and skewed FTE data. Futhermore, Kolmogorov-Smirnov and Anderson-Darling tests were conducted to evaluate the goodness of fit of Johnson model.

Research on the Design of Helicopter Nonlinear Optimal Controller using SDRE Technique (SDRE 기법을 이용한 헬리콥터 비선형 최적제어기 설계 연구)

  • Yang, Chang-Deok;Kim, Min-Jae;Lee, Jung-Hwan;Hong, Ji-Seung;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1152-1162
    • /
    • 2008
  • This paper deals with the State-Dependent Riccati Equation (SDRE) technique for the design of helicopter nonlinear flight controllers. Since the SDRE controller requires a linear system-like structure for nonlinear motion equations, a state-dependent coefficient (SDC) factorization technique is developed in order to derive the conforming structure from a general nonlinear helicopter dynamic model. Also on-line numerical methods of solving the algebraic Riccati equation are investigated to improve the numerical efficiency in designing the SDRE controllers. The proposed method is applied to trajectory tracking problems of the helicopter and computational tips for a real time application are proposed using a high fidelity rotorcraft mathematical model.

KSR-III 비행시험 발사 시나리오 개발

  • Shin, Myoung-Ho;Seo, Jin-Ho;Kim, Kwang-Soo;Hong, Il-Hi
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.140-152
    • /
    • 2003
  • Scenario is a guiding principle of launch operation and control for rocket and ground support system. Therefore, developing a scenario is the first step to prepare for rocket launch, which is a critical task for success of KSR-III flight test. The launch scenario for KSR-III flight test is a procedural sequence of command and control signals to be given to rocket and ground support systems. In this paper, the UML object modeling method is applied to development of a launch scenario. First, the subsystems of the launch system are modeled by objects, and then the interfaces between each two subsystems are modeled by association links. The finally obtained object diagram of KSR-III launch system is used to analyzing flow of data and commands and control signals, and interactions. The scenario includes the sequences of pre-launch/launch operations and emergency operations.

  • PDF

The modified Ziegler-Nichols method for obtaining the optimum PID gain coefficients under quadcopter flight system (쿼드콥터 비행 시스템에서 최적의 PID 이득 계수를 얻기 위한 수정된 지글러-니콜스 방법)

  • Lee, Sangrok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.195-201
    • /
    • 2020
  • This paper implemented quadcopter-type drone system and proposed the heuristic method for obtaining the optimum gain coefficients in order to minimize the settling time. Control system for quadcopter posture stabilization reads the posture data from accelerator and gyro sensor, revises the original posture data using Mahony filter, and drives 4 DC motors using PID controller. The first step of the proposed method is to obtain the gain coefficients using the Ziegler-Nichols method, and then determine the optimum gain coefficients using the heuristic method at the next 3 steps. The experimental result shows that the maximum overshoot decreases from 44.3 to 29.8 degrees and the settling time decreases from 2.6 to 1.7 seconds compared to the Ziegler-Nichols method. Therefore, we proved that the proposed method works well in quadcopter flight system with high motor noise while reducing trial and error to obtain the optimal PID gain coefficients.

A Robust Fault Isolation Filter Design Based on Left Eigenstructure Assignment and its Application to Flight System (좌 고유구조지정법 기반 결실 고장 분리 필터 설계 및 비행체 시스템에의 응용)

  • Lee, Dae-Yung;Park, Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.384-392
    • /
    • 2001
  • In this paper, we propose a novel robust fault isolation filter design method using the left eigenstructure assignment scheme proposed by the authors. The proposed method guarantees that the ${\gamma}$ simultaneous faults can be isolated when the number of available outpur measurements is ${\gamma}$. Moreover, if there exist redundant output measurements, the eigenvaluses of te filter system can be assigned to the desired position or the filter can be designed robustly to, the system parameter variation. Liu & Si developed a filter design method which has the same purpose, fault isolation. However their method cannot use the redundant freedom of the output matrix C. The proposed filter can use the redundant freedom of the matrix C effectively. Beside this in this paper, an eigenstructure assignment methodology that satisfies the required fault isolation conditions is also proposed. The proposed fault isolation filter was applied for isolating the simultaneous faults to a VTOL aircraft in order to verify the fault isolation performance.

  • PDF

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.