• Title/Summary/Keyword: 비행안전시스템

Search Result 235, Processing Time 0.022 seconds

Drone-based smart quarantine performance research (드론 기반 스마트 방재 방안 연구)

  • Yoo, Soonduck
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.437-447
    • /
    • 2020
  • The purpose of this study is to research the countermeasures and expected effects through the use of drones in the field of disaster prevention as a drone-based smart quarantine performance method. The environmental, market, and technological approaches to the review of the current quarantine performance task and its countermeasures are as follows. First, in terms of the environment, the effectiveness of the quarantine performance business using drone-based control is to broaden the utilization of forest, bird flu, livestock, facility areas, mosquito larvae, pests, and to simplify and provide various effective prevention systems such as AI and cholera. Second, in terms of market, the standardization of livestock and livestock quarantine laws and regulations according to the use of disinfection and quarantine missions using domestic standardized drones through the introduction of new technologies in the quarantine method, shared growth of related industries and discovery of new markets, and animal disease prevention It brings about the effect of annual budget savings. Third, the technical aspects are (1) on-site application of disinfection and prevention using multi-drone, a new form of animal disease prevention, (2) innovation in the drone industry software field, and (3) diversification of the industry with an integrated drone control / control system applicable to various markets. (4) Big data drone moving path 3D spatial information analysis precise drone traffic information ensures high flight safety, (5) Multiple drones can simultaneously auto-operate and fly, enabling low-cost, high-efficiency system deployment, (6) High precision that this was considered due to the increase in drone users by sector due to the necessity of airplane technology. This study was prepared based on literature surveys and expert opinions, and the future research field needs to prove its effectiveness based on empirical data on drone-based services. The expected effect of this study is to contribute to the active use of drones for disaster prevention work and to establish policies related to them.

아리랑 위성 2호 X-대역 안테나 햇 제작 및 시험

  • Lee, Jin-Ho;Lee, Na-Young;Moon, Hong-Youl;Kim, Hee-Seob;Kim, Gyu-Sun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.103-107
    • /
    • 2005
  • There is an X-band transmission system in KOMPSAT-2 in order to downlink the acquired image data in high speed. KOMPSAT-2 employs a steerable high gain X-band antenna for that purpose. During the ground test, the X-band RF radiation is so strong that it has to be controlled for safety, while spacecraft needs to keep flight configuration. Also in a launch site of which all test facilities are the subjects of strict radiation control, the antenna system should be tested again without any change in the configuration. To limit the actual radiation of RF power, an antenna hat was manufactured and thoroughly tested to demonstrate the spacecraft safety when using it.

  • PDF

Brief Summary of KSLV-I Upper Stage Kick Motor Development (KSLV-I 상단 킥모터 개발 개요)

  • Lee, Hanju;Lee, Jung Ho;Oh, Seung Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.91-96
    • /
    • 2014
  • KSLV-I (Korea Space Launch Vehicle-I) upper stage KM (Kick Motor) is a solid propulsion system which consists of igniter, SAD (Safety Arming Device), composite case, and submerged nozzle capable of TVC (Thrust Vector Control) actuation. Each subsystem of KM fulfilled development requirements for achieving a flight mission successfully. We confirmed the successful development of KM from the $3^{rd}$ flight test results of NARO on January 30, 2013. This article deals with the requirements of KM and the results on configuration management, mass variation, thrust axis alignment, and major test results and so on.

Development of Non-Electric and Delay Explosive Bolt (비전기식 지연형 폭발볼트 개발)

  • Lee YeungJo;Kim DongJin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.92-95
    • /
    • 2005
  • The present work has been developed the type of non-electric and delay explosive bolt which does not need power supply device and has the delay function in the operation of the explosive bolt. Separation device system could be minimized because of non-electric power supply system. In order to prove the mechanism of operation, the present work used to ignite the initiator the power of air resistance caused front aviation object. we can be founded from the present work that the changes in the operation load influence directly the ignition of the initiator. The design of non-electric and delay explosive bolt is the most suitable the separation system necessary to reduce the velocity of aviation object and safe landing of parachute system.

  • PDF

Performance Analyses of the GPS Receiver for Satellite Launch Vehicles according to Temperature Variation (온도변화에 따른 위성발사체용 GPS 수신기의 성능분석)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.101-108
    • /
    • 2005
  • The GPS(Global Positioning System) receiver for satellite launch vehicles which will be mounted on a launch vehicle can be applied to the flight safety system with its accurately calculated position and velocity data during vehicle's flight. This paper analyzes the performance of the GPS receiver such as SNR(Signal to Noise Ratio), fix mode, position and velocity error, number of visible and tracking satellites, and PDOP(Position Dilution of Precision) under temperature variation which is changed from -34$^{\circ}C$ to +71$^{\circ}C$.

Development of Evaluation System for Aviation Mission Suitability Depending on Pilot's Alertness and Physiological Stability Level (조종사의 각성 및 생리적 안정에 근거한 비행임무적합 수준 판정 시스템의 개발)

  • Kim, Dongsoo;Lee, Wooil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.789-796
    • /
    • 2015
  • Fighter pilot's ability to maintain both mental and physical capabilities in highly stressful situations is important for aviation safety as well as mission performance because pilot may confront frequently unexpected physical and psychological stimulation. Cumulative psychological stress and physical fatigue can be causes of mood distortion, declined alertness, and can lead to reduction of combat capability. We have investigated bio-signals and performance tests to monitor stress and fatigue levels, and developed a system to evaluate aviation mission suitability before flight. This study elucidated that stress and fatigue level of pilot can be monitored by psychomotor cognitive test(PCT) and heart rate variability(HRV), and that the best of reference for aviation mission suitability was confidential interval obtained from cumulative data of individuals. The system to evaluate aviation mission suitability was constructed with measuring part with PCT and HRV and control part with DB and algorithm.

Development of Non-Electric and Delay-Type Explosive Bolt (비전기식 지연형 폭발볼트 개발)

  • Lee YeungJo;Kim DongJin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.60-65
    • /
    • 2005
  • The present work has developed non-electric and delay-type explosive bolt that does not need electric power supply device and has the delay function in the operation. Non-electric power supply system enables separation device system to be minimized. In order to prove the mechanism of the operation, the power of air resistance caused from aviation object used to ignite the initiator. we can be founded from the present work that the changes in the operation load influence directly the ignition of the initiator. The design of non-electric and delay type of explosive bolt is the most suitable for the separation system that is necessary to reduce the velocity of aviation object and safe landing of parachute system.

Verification of Automatic PAR Control System using DEVS Formalism (DEVS 형식론을 이용한 공항 PAR 관제 시스템 자동화 방안 검증)

  • Sung, Chang-ho;Koo, Jung;Kim, Tag-Gon;Kim, Ki-Hyung
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • This paper proposes automatic precision approach radar (PAR) control system using digital signal to increase the safety of aircraft, and discrete event systems specification (DEVS) methodology is utilized to verify the proposed system. Traditionally, a landing aircraft is controlled by the human voice of a final approach controller. However, the voice information can be missed during transmission, and pilots may also act improperly because of incorrectness of auditory signals. The proposed system enables the stable operation of the aircraft, regardless of the pilot's capability. Communicating DEVS (C-DEVS) is used to analyze and verify the behavior of the proposed system. A composed C-DEVS atomic model has overall composed discrete state sets of models, and the state sequence acquired through full state search is utilized to verify the safeness and the liveness of a system behavior. The C-DEVS model of the proposed system shows the same behavior with the traditional PAR control system.

An analysis on the Structural Safety of Supersonic rocket Preliminary Model using Fluid-Structure Interaction (초음속 비행체 모델의 연성기법을 이용한 구조 안전성 해석)

  • Do, Gyu-Sung;So, Jung-Soo;Kang, Ji-Hoon;Kim, Hyung-Jin;Park, Dae-Hun;Oh, Jeong-Su;Moon, Hee-Jang
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.35-41
    • /
    • 2008
  • The structural stability for preliminary model of supersonic rocket which has large L/D ratio is investigated. Large L/D ratio can cause a critical problem on the structural stability by the increase of bending-moment. By using the ANSYS and the CFX codes, we inspected the structural stability for Ma=2 and angle of attack for $20^{\circ}$. The optimum number of bolts and their joints required on the rocket surface are predicted.

  • PDF

A Study on the Safety Management and Risk Assessment of the Certification Flight Test (인증비행시험 안전관리 및 위험도 평가기법 연구)

  • Choi, Joo-Won
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • Certification flight test is very risky and there are many hazards. Because the flight test is performed with the aircraft, that is safety and flight characteristics are not proven. And the test items and conditions are critical. If there is loss of aircraft during certification flight test, the certification program, development period can be delayed. Therefore, maintaining safety of the aircraft during flight test is very important. There are not much flight test experiences in Korea. However, developed nations has long history of flight test and experiences of flight test accidents. Based on these experiences, they has developed systematic management methods for the flight test safety. In this study, I would like to introduce safety management and risk assessment of the certification flight test.