• Title/Summary/Keyword: 비행안전시스템

Search Result 232, Processing Time 0.023 seconds

An analysis on the relative importance of aptitude test items for integrated pilot aptitude evaluation (종합적 조종적성 판단을 위한 적성 검사 항목의 상대적 중요도 분석)

  • 유희천;이달호;김영준
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.46-55
    • /
    • 1993
  • 조종사가 수행하는 조종 업무는 여러 정보를 동시에 지각하여 처리하여 야 하는 복잡한 작업으로 구성되어 있어, 조종사에게는 고도의 인간성능이 요구되고 있다. 또한 조종기술을 습득하기 위해서는 많은 훈련시간과 비용 이 소요되며, 조종사의 실수는 치명적인 사고를 초래한다. 따라서 조기에 비행 부적격자를 판별하고, 미흡한 조종 적성을 함양시킬 수 있는 교육 . 훈련 프로그램을 조종 후보생에게 적용시키는 분석적 조종적성 진단 체계 개발은 조 종사의 도태율 감소, 효율적인 비행훈련, 비행 안전사고 감소 등의 측면에서 절실하게 요구되고 있다. 본 연구에서는 조종 업무 수행시 요구되는 여러 인간 기능의 중요도 차이를 조종 적성 평가 체제에 적용하기 위해서, 각 적성 검사 항목들의 상대적 중요도를 분석하고 이의 타당성을 평가하였다. 적성검사 항목의 상대적 중요도 분석은 조종적성검사 계층구조의 각 수준별 쌍체 비교 평가와 AHP(Analytic Hierarchy Process) 분석에 의한 상대적 중요도 산출 및 평가, 그리고 일관성 지수(Consistency Index)에 의한 분석 결과의 조정을 통해 이루어 졌다. 적성검사 항목의 쌍체 비교 평가는 심리기능검사, 비행자질 검사 등 총 29개 적성검사 항목에 대해 검사를 받았고 또한 초등비행 훈련과정을 수료한 조종 학생들에 의해 이루어 졌다. 상대적 중요도를 분석한 결과 심리기능 검사(W=0.30)가 다른 검사에 비하여 조종적성 평가에 중요한 검사로 나타났으며, 세부 항목으로는 주의 분배력(W=0.13), 추적능력(0.06) 등이 상대적으로 중요한 검사 항목으로 나타났다. 또한 상대적 중요도 결과를 적용한 적성검사 성적이 적용하지 않은 적성검사 성적에 비해 비행성적에 대한 예측 능력이 좋은 것으로 평가되었다.al age)가 있다는 것을 의미하는 것이다. 한편, 생산현장에서는 자동화, 기계화가 진보되어 육체적인 노동이 경감된 결과, 중고령자라도 할 수 있는 작업이 많아지고 있다. 또, VDT (Visual Dislay Terminal) 작업과 같은 정보처리 작업의 수요가 증가하여 그 인재의 부족이 지적되고 있다. 따라서 중고령자의 기능을 조사하여 어떠한 작업에 적합한가를 판단하는 것이 중요한 과제로 되었다. 그러나 노동에는 많은 기능이 관여 하고, 그 내용에 따라서 요구되는 기능이 서로 다르기 때문에 노동적응능력의 기본적인 기능으로 보여지는 것에 좁혀서 작업능력의 연령증가 변화에 대하여다원적 평가를 하는 것이 실제적이라고 할 수 있다. 따라서 본 연구에서는 인간이 가지고 있는 다수의 기능중에서 수지교 치성과 연령증가와의 관계를 조사한다. 만약 연령증가 만으로 수지교치성을 평가 할 수 없는 경우에는 어떠한 요인이 수지기민성의 변화에 영향을 미치는가를 검토한다.t list)에서 자동적으로 사건들의 순서가 결정되도록 확장하였으며, 설비 제어방식에 있어서도 FIFO, LIFO, 우선 순위 방식등을 선택할 수 있도록 확장하였다. SIMPLE는 자료구조 및 프로그램이 공개되어 있으므로 프로그래머가 원하는 기능을 쉽게 추가할 수 있는 장점도 있다. 아울러 SMPLE에서 새로이 추가된 자료구조와 함수 및 설비제어 방식등을 활용하여 실제 중형급 시스템에 대한 시뮬레이션 구현과 시스템 분석의 예를 보인다._3$", chain segment, with the activation energy of carriers from the shallow trap with 0.4[eV], in he amorphous regions.의 증발산율은 우기의 기상자료를 이용하여 구한 결과

  • PDF

Study on Revision of Aviation Safety act for RPAS (무인항공기 안전운용을 위한 항공안전법 개정방향에 대한 연구)

  • Hong, Hye-Jung;Han, Jae-Hyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.65-93
    • /
    • 2020
  • With the development of information and communication technology, the unmanned aerial vehicle industry began to attract attention as a new growth industry as it entered the fourth industrial revolution. As the size of the unmanned aerial vehicles and the scope of airspace vary from small drones to large unmanned aerial vehicles, the developed countries such as USA and Europe are developing plans for the integrated operation of manned and unmanned aerial vehicles. ICAO is also working on amendments to the relevant ICAO annexes to establish international standards and recommendations for unmanned aerial vehicles. Korea also needs to prepare for the integrated operation of manned and unmanned aerial vehicles that will come in the future, and for this purpose, it is necessary to review and revise the national regulation systems for the safe operation of unmanned aerial vehicles. This study analyzes the amendments of related annexes discussed on the Remotely Piloted Aircraft System (RPAS) pannel, and suggests the direction of revision of the Aviation Safety Act for the safe operation of unmanned aerial vehicles in comparison with the existing Aviation Safety Act.

Flight Safety Assurance Technology for Rotary Aircraft through Optimization of HUMS Vibration Thresholds (회전익항공기 상태감시시스템 임계값 최적화를 통한 비행안전성 확보기술)

  • Jun, Byung-kyu;Jeong, Sang-gyu;Kim, Young-mok;Chang, In-ki
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.446-452
    • /
    • 2016
  • The aircraft has to be considered for safety very importantly because of peculiarity of flight in the air, so it should be retained through proper inspection and maintenance not only in production phase but also in operating phase. Recently, it is using the latest technology as engineering approach not depending on human factor to determine on maintenance needs, and domestic production rotary aircraft also has the health & usage monitoring system to measure and to monitor major components. However, continued vibration exceedance phenomenon occurred in production and operation phase because of inappropriate thresholds, and it confirmed as false alarm which is not necessary to repair. In this paper, it is described that operational concept of HUMS, and especially it contains a study result for efficiency of aircraft operation and ultimately the improvement of flight safety by optimizing HUMS thresholds to determine efficiently necessity of maintenance under limited conditions and by establishing inspection/maintenance procedures when the re-designated thresholds exceedance occurred.

Vision-based Obstacle State Estimation and Collision Prediction using LSM and CPA for UAV Autonomous Landing (무인항공기의 자동 착륙을 위한 LSM 및 CPA를 활용한 영상 기반 장애물 상태 추정 및 충돌 예측)

  • Seongbong Lee;Cheonman Park;Hyeji Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.485-492
    • /
    • 2021
  • Vision-based autonomous precision landing technology for UAVs requires precise position estimation and landing guidance technology. Also, for safe landing, it must be designed to determine the safety of the landing point against ground obstacles and to guide the landing only when the safety is ensured. In this paper, we proposes vision-based navigation, and algorithms for determining the safety of landing point to perform autonomous precision landings. To perform vision-based navigation, CNN technology is used to detect landing pad and the detection information is used to derive an integrated navigation solution. In addition, design and apply Kalman filters to improve position estimation performance. In order to determine the safety of the landing point, we perform the obstacle detection and position estimation in the same manner, and estimate the speed of the obstacle using LSM. The collision or not with the obstacle is determined based on the CPA calculated by using the estimated state of the obstacle. Finally, we perform flight test to verify the proposed algorithm.

Real-Time Estimation of Control Derivatives for Control Surface Fault Detection of UAV (실시간 조종미계수 추정에 의한 무인비행기 조종면 고장검출)

  • Lee, Hwan;Kim, Eung-Tae;Choi, Hyoung-Sik;Choi, Ji-Young;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.999-1005
    • /
    • 2007
  • In case of an abnormal condition of control surface, the real-time estimation of aerodynamic derivatives are required for the reconfigurable control system to be flight for missions or return to the head office. The goal of this paper is to represent a technique of fault detection to the control surface as a base research to the fault tolerant control system for safety improvement of UAV. The real-time system identification for the fault detection to the control surface was applied with the recursive Fourier Transform and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than about 50% in the normal condition.

A Study on Aircraft Sensitivity Analysis for Supersonic Air-Data Error at Low Altitude (공기정보 오차에 의한 저고도 초음속 영역에서의 민감도 해석에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Kim, Seong-Youl;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.80-87
    • /
    • 2005
  • T-50 supersonic jet trainer aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as altitude, VCAS(Calibrated Airspeed) and Angle of Attack from IMFP(Integrated Multi-Function Probe). IMFP sensors information have triplex structure using three IMFP sensors. Air-data selection logic is mid-value selection in three information from three IMFP sensors in order to have more reliability. From supersonic flight test at high altitude, air-data information is dropped simultaneously because of supersonic shock wave effect. This error information may affect to aircraft stability and safety in supersonic area at low altitude. This paper propose that sensitivity analysis and HQS(Handling Quality Simulator) pilot simulation in order to analyze flight stability and controllability in supersonic area at low altitude when these information is applied to flight control law.

Unstable Approach Mitigation Based on Flight Data Analysis (비행 데이터 분석 기반의 불안정 접근 경감방안)

  • Kim, Hyeon Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.52-59
    • /
    • 2021
  • According to the International Air Transport Association (IATA), 61% of the accidents occurred during the approach and landing phase of the flight, with 16% of the accidents caused by unstable access of the commercial aircraft. It was identified that the pilot's unstable approach and poor manipulation of correction led to accidents by continuing the excessive approach without go-around manuever. The causes of unstable access may vary, including airport approach procedures, pilot error, misplanning, workload, ATC (Air Traffic Contol) congestion, etc. In this study, we use the flight data analysis system to select domestic case airports and aircraft type where unstable approach events occur repeatedly. Through flight data analysis, including main events, airport approach procedures, pilot operations, as well as various environmental factors such as weather and geographical conditions at the airport. It aims to identify and eliminate the tendency of unstable approach events and the causes and risks of them to derive implications for mitigating unstable approach events and for developing navigation safety measures.

Structural Analysis of Fasteners in the Aircraft Structure of the High-Altitude Long-Endurance UAV (고고도 장기체공 무인기용 기체구조 체결부 구조 해석)

  • Kim, Hyun-gi;Kim, Sung Joon;Kim, Sung Chan;Kim, Tae-Uk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2018
  • Unmanned Aerial Vehicles (UAV) have been used for various purposes in multiple fields, such as observation, communication relaying, and information acquisition. Nowadays, UAVs must have high performance in order to acquire more precise information in larger amounts than is now possible while performing for long periods. At present, domestically, a high-altitude long-endurance UAV (HALE UAV) for long-term flight in the stratosphere has been developed in order to replace some functions of the satellite. In this study, as a part of structural soundness evaluation of the aircraft structure developed for the HALE UAV, the structural soundness of the fasteners of the fuselage and tail is evaluated by calculating the margin of safety(M.S). The result confirms the validity of the design of the fasteners in the aircraft structure of the UAV.

The Aircraft-level Simulation Environment for Functional Verification of the Air Data Computer (대기자료 컴퓨터 (Air Data Computer) 기능검증을 위한 항공기 수준의 시뮬레이션 환경)

  • Lee, Dong-Woo;Lee, Jae-Yong;Na, Jong-Whoa
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • In recent years, model-based design techniques have been used as a way to support cost reduction and safety certification in the development of avionics systems. In order to support performance analysis and safety analysis of aircraft and avionics equipment (item) using model based design, we developed a multi-domain simulation environment that inter-works with heterogeneous simulators. We present a multi-domain simulation environment that can verify air data computers and integrated multi-function probes at the aircraft level. The model was developed by Simulink and the flight simulator X-Plane 10 was used to verify the model at the aircraft level. Avionics model functions were tested at the aircraft level and the air data errors of the model and flight simulator were measured within 0.1%.

A Study on the Verification of Crashworthiness for Fuel System of Military Rotorcraft (군용 회전익항공기 연료계통 내추락성 입증에 관한 연구)

  • Sangsoo Park;Junmo Yang;Munguk Kim;Jaechul Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.16-23
    • /
    • 2023
  • The aircraft fuel system performs a number of functions such as supplying fuel, transferring fuel between fuel tanks, and measuring the amount of residual fuel in each fuel tank. Since it is a direct cause of fire hazard in crash incident, it is a must to improve survivability of crew members by designing the airframe to tolerate expected crash impact. The civil aviation authority requires intensive verification of the fuel system design to determine precise application of the airworthiness requirement. Research activity on airworthiness certification criteria and verification scheme is still insufficient, although it has a significant importance. In this paper, as part of a study to improve flight safety by developing guidelines for demonstrating fuel system crash resistance, analysis results of fuel system crash-related airworthiness certification standards, verification scheme, and cases study applicable to military rotorcraft have been reviewed.