• Title/Summary/Keyword: 비행기술

Search Result 1,244, Processing Time 0.024 seconds

The Status of North Korean Airspace after Reunification (북한 공역의 통일 후 지위)

  • Kwon, Chang-Young
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.287-325
    • /
    • 2017
  • Considering the development of aerospace, military science and technology since the 20th century, the sky is very important for the nation's existence and prosperity. The proverb "Whosoever commands the space commands the world itself!" emphasizes the need for the command of the air. This essay is the first study on the status of airspace after reunification. First, the territorial airspace is over the territory and territorial sea, and its horizontal extent is determined by the territorial boundary lines. Acceptance of the present order is most reasonable, rather than attempting to reconfigure through historical truths about border issues, and it could be supported by neighboring countries in the reunification period. For peace in Northeast Asia, the reunified Korea needs to respect the existing border agreement between North Korea and China or Russia. However, the North Korean straight baselines established in the East Sea and the Yellow Sea should be discarded because they are not available under United Nations Convention on the Law of the Sea. It is desirable for the reunified Korea to redefine the straight baselines that comply with international law and determine the territorial waters up to and including the 12-nautical mile outside it. Second, the Flight Information Region (hereinafter "FIR") is a region defined by the International Civil Aviation Organization (hereinafter "ICAO") in order to provide information necessary for the safe and efficient flight of aircraft and the search and rescue of aircraft. At present, Korea is divided into Incheon FIR which is under the jurisdiction of South Korea and Pyongyang FIR which is under the jurisdiction of North Korea. If North Korea can not temporarily exercise control of Pyongyang FIR due to a sudden change of circumstances, it is desirable for South Korea to exercise control of Pyongyang FIR, and if it is unavoidable, ICAO should temporarily exercise it. In reunified Korea, it is desirable to abolish Pyongyang FIR and integrate it into Incheon FIR with the approval of ICAO, considering systematic management and control of FIR, establishment of route, and efficiency of management. Third, the Air Defense Identification Zone (hereinafter "ADIZ") is a zone that requires easy identification, positioning, and control of aircraft for national security purposes, and is set up unilaterally by the country concerned. The US unilaterally established the Korea Air Defense Identification Area (KADIZ) by the Declaration of Commitment on March 22, 1951. The Ministry of Defense proclaimed a new KADIZ which extended to the area including IEODO on December 13, 2013. At present, North Korea's military warning zone is set only at maritime boundaries such as the East Sea and the Yellow Sea. But in view of its lack of function as ADIZ in relations with China and Russia, the reunified Korea has no obligation to succeed it. Since the depth of the Korean peninsula is short, it is necessary to set ADIZ boundary on the outskirts of the territorial airspace to achieve the original purpose of ADIZ. Therefore, KADIZ of the reunified Korea should be newly established by the boundary line that coincides with the Incheon FIR of the reunified Korea. However, if there is no buffer zone overlapping with or adjacent to the ADIZs of neighboring countries, military tensions may rise. Therefore, through bilateral negotiations for peace in Northeast Asia, a buffer zone is established between adjacent ADIZs.

  • PDF

A Study on the Cause and Improvement of Crack in the Installing Structure of the Bulkhead of Aircraft (항공기 Bulkhead 체결구조의 균열 원인 및 개선에 관한 연구)

  • Choi, Hyoung Jun;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.448-454
    • /
    • 2020
  • This study aims to determine the cause of structural defects occurring during aircraft operations and to verify the structural integrity of the improved features. The fracture plane was analyzed to verify the characteristics of the cracks and the fatigue failure leading to the final fracture was determined by the progress of the cracks by the repeated load. During aircraft operations, the comparative analysis of the load measurement data at the cracks with the aircraft design load determined that the measured load was not at the level of 30% of the design to be capable of being damaged. A gap analysis resulted in a significant stress of approximately 32 ksi at the crack site. Pre-Load testing also confirmed that the M.S. was reduced by more than 50% from +0.71 to +0.43, resulting in a sharp increase in aircraft load and the possibility of cracking when combined. Thus, structural reinforcement and the removal of the gap for aircraft cracking sites improved the defect. Based on the structural strength analysis of the improvement features, the bulkhead has a margin of about +0.88 and the fitting feature is about +0.48 versus allowable stress. In addition, the life analysis results revealed an improvement of approximately 84000 hours.

A Robust Depth Map Upsampling Against Camera Calibration Errors (카메라 보정 오류에 강건한 깊이맵 업샘플링 기술)

  • Kim, Jae-Kwang;Lee, Jae-Ho;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.8-17
    • /
    • 2011
  • Recently, fusion camera systems that consist of depth sensors and color cameras have been widely developed with the advent of a new type of sensor, time-of-flight (TOF) depth sensor. The physical limitation of depth sensors usually generates low resolution images compared to corresponding color images. Therefore, the pre-processing module, such as camera calibration, three dimensional warping, and hole filling, is necessary to generate the high resolution depth map that is placed in the image plane of the color image. However, the result of the pre-processing step is usually inaccurate due to errors from the camera calibration and the depth measurement. Therefore, in this paper, we present a depth map upsampling method robust these errors. First, the confidence of the measured depth value is estimated by the interrelation between the color image and the pre-upsampled depth map. Then, the detailed depth map can be generated by the modified kernel regression method which exclude depth values having low confidence. Our proposed algorithm guarantees the high quality result in the presence of the camera calibration errors. Experimental comparison with other data fusion techniques shows the superiority of our proposed method.

Analysis of UHF-Band Propagation Loss in Long-distance Air-to-Ground Communication Tests (UHF 대역 장거리 항공 통신 시험의 전파 손실 분석)

  • Chang, Min-soo;Kim, Kyoo-hwan;Kim, Jae-hwan;Lee, Jae-moon;Whang, Chan-ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.55-63
    • /
    • 2018
  • In this paper, we measured the propagation path loss by a ground to air flight communication test at UHF band and analyzed the results. The ground receiving terminal was located at 1,100m above sea level in Cheju Island and the airborne transmit terminal flew at an altitude of 3.5km from 150 to 220km from the ground terminal. In this case, the ground terminal and the airborne terminal are on the Line of Sight. Therefore loss in this communications environment can be predicted based on Free Space Loss. However, in this test, the sea level exists between two terminals, and due to the very small angle of incidence on the reflecting surface due to the long-range communication environment, it is not possible to accurately predict the loss of free space only. Therefore, considering that there are no surrounding obstacles and that a line of sight is secured between the end of two terminals, we applied a plane earth reflection model and a spherical earth reflection model to estimate the propagation path loss and compared with the actual test results. As a result of the comparison, the predicted propagation path loss by a spherical earth reflection model were quite similar to the actual test values.

Thermal and Flow Analysis of a Driving Controller for Active Destruction Protections (능동 파괴 방호 구동제어기의 열 유동 해석)

  • Ryu, Bong-Jo;Oh, Bu-Jin;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.235-242
    • /
    • 2017
  • A driving controller for active destruction protections can be applied to machinery, aerospace and military fields. In particular, this controller can be used to track and attack enemy flying objects through the active control. It is important to ensure reliability of the driving controller since its operation should be kept with precision to the target point. The temperature of the environment where the driving controller is used is about -32 C ~ 50 C (241~323 ). Heat generated in the driving controller should be maintained below a certain threshold (85 C (358 )) to ensure reliability; therefore, the study and analysis of the heat flow characteristics in the driving controller are required. In this research, commercial software Solid-Works Flow Simulation was used for the numerical simulation assuming a low Reynolds number turbulence model and an incompressible viscous flow. The goal of this paper is to design the driving controller safely by analyzing the characteristics of the heat flow inside of the controller composed of chips or boards. Our analysis shows temperature distributions for boards and chips below a certain threshold.

Study on the Defect Improvement of Fuel Flow Proportioner Install Structure on Aircraft (항공기 연료흐름분배기 장착 구조물 결함개선 연구)

  • Choi, Hyoung Jun;Lee, Jin Won;Choi, Jae Ho;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.558-567
    • /
    • 2020
  • This study examined the defect characteristics of fuel flow proportioner-mounted structures to analyze the causes of structural defects during aircraft operation. System vibrations and single component vibrations that occur during aircraft operations are usually the cause of structural defects. The fuel flow proportioner causes a defect in the support structure due to the vibration caused by the pressure change caused by the sudden increase in the flow rate. Defects in the support structure of the fuel flow proportioner are not correlated directly with the cracking of the maneuver, and flight time according to aircraft operation analysis is related to the use of A/B. The structural reinforcement configuration was confirmed through static and life analysis of the cracks of the bracket mounted under the fuel flow proportioner for improvement of the defect. An analysis of the reinforcement revealed a minimum structural strength of +0.15. Structural life analysis confirmed that the stress acted on the site under 15Ksi. The fatigue life was confirmed to be more than 7,700 Cycles.

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.

Performance Evaluation of Nonhomogeneity Detector According to Various Normalization Methods in Nonhomogeneous Clutter Environment (불균일한 클러터 환경 안에서 Nonhomogeneity Detector의 다양한 정규화 방법에 따른 성능 평가)

  • Ryu, Jang-Hee;Jeong, Ji-Chai
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.72-79
    • /
    • 2009
  • This paper describes the performance evaluation of NHD(nonhomogeneity detector) for STAP(space-time adaptive processing) airborne radar according to various normalization methods in the nonhomogeneous clutter environment. In practice, the clutter can be characterized as random variation signals, because it sometimes includes signals with very large magnitude like impulsive signal due to the system environment. The received interference signals are composed of homogeneous and nonhomogeneous data. In this situation, NHB is needed to maintain the STAP performance. The normalization using the NHD result is an effective method for removing the nonhomogeneous data. The optimum normalization can be performed by a representative value considered with a characteristic of the given data, so we propose the K-means clustering algorithm. The characteristic of random variation data due to nonhomogeneous clutters can be considered by the number of clusters, and then the representative value for selecting the homogeneous data is determined in the clustering result. In order to reflect a characteristic of the nonstationary interference data, we also investigate the algorithm for a calculation of the proper number of clusters. Through our simulations, we verified that the K-means clustering algorithm has very superior normalization and target detection performances compared with the previous introduced normalization methods.

  • PDF

On the Requirements and Risk Management using QFD Methods for ACTD Programs (신개념기술시범(ACTD) 사업에서 QFD 기법을 이용한 요구사항 및 위험관리 방안에 관한 연구)

  • Lee, Tae-Hyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1744-1751
    • /
    • 2011
  • The concept of the advanced concept technology demonstration (ACTD) has previously been introduced in USA in order to make it possible to rapidly transfer advanced technologies developed in commercial sectors to develop weapon systems in the defense area. Since then in Korea several ACTD programs have been developed and being carried out However, there are few program management methods suitable for the characteristics of the ACTD programs, which requires stringent management of the program requirements and risks due to the radically shortened development time. In this paper such a problem has been addressed and as a solution approach the quality function deployment (QFD) method has been adopted, which is being served as a successful model in various areas such as manufacturing. The QFD method is used in our study to improve communication between various stakeholders involved in the ACTD programs and also to reduce risks related to requirements. Specifically we have developed the ACTD standard templates based on the QFD method and discussed how to use the developed templates. Finally, the application of the study result is demonstrated through the ACTD program of flight information demonstration system and also specific ways are suggested to use the standard templates, to manage requirements, and to reduce risks.

Study on Local Path Control Method based on Beam Modeling of Obstacle Avoidance Sonar (장애물회피소나 빔 모델링 기반의 국부경로제어 기법 연구)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.218-224
    • /
    • 2012
  • Recently, as the needs of developing the micro autonomous underwater vehicle (AUV) are increasing, the acquisition of the elementary technology is urgent. While they mostly utilizes information of the forward looking sonar (FLS) in conventional studies of the local path control as an elementary technology, it is desirable to use the obstacle avoidance sonar (OAS) because the size of the FLS is not suitable for the micro AUV. In brief, the local path control system based on the OAS for the micro AUV operates with the following problems: the OAS offers low bearing resolution and local range information, it requires the system that has reduced power consumption to extend the mission execution time, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent local path control algorithm based on the beam modeling of OAS with the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance and analyze the characteristic of the proposed algorithm, the course control of the underwater flight vehicle (UFV) is performed in the horizontal plane. Simulation results show that the feasibility of real application and the necessity of additional work in the proposed algorithm.