• Title/Summary/Keyword: 비행경로각

Search Result 59, Processing Time 0.022 seconds

Homing Guidance Law of Anti-Ship Missiles Using Flight Path Angle (비행 경로각을 이용한 대함 유도탄의 호밍 유도법칙)

  • Jin, Sheng-Hao;Yang, Bin;Hwang, Chung-Won;Park, Seung-Yub;Park, Seung-Je
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.596-603
    • /
    • 2010
  • This paper presents a homing guidance law of anti-ship missiles using flight path angle to achieve an impact time constraint as well as an impact angle constraint. the independent variable in the nonlinear engagement model is change d from the flight time to the heading angle of the missile. The proposed guidance law can home a missile to the target with zero miss distance as well as satisfying both of the impact angle and time constraints. The performance of the proposed guidance law is evaluated by the computer simulations.

Design a Path Following Line-of-Sight Guidance Law based on Vehicle Kinematics (비행체 운동 역학 기반 경로 추종 시선각 유도 법칙 설계)

  • You, Dong-Il;Shim, Hyun-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.506-514
    • /
    • 2012
  • This paper represents a method for designing of path following Line-of-Sight(LOS) guidance law based on vehicle kinematics. In general, a LOS guidance law which is composed of gains and approach length as design parameters is designed by empirical or trial-and-error method. These approaches cannot guarantee a precision tracking performance of guidance law consistently. Also, the design parameters should be redesigned with variations of vehicle maneuverability and flight velocity. Based on a vehicle kinematics with its velocity, the proposed method for designing of parameters not only minimizes the number of design parameters, also has a reliable and consistent tracking performance using variable guidance gain changed in accordance with flight velocity. This is validated by nonlinear simulation with $1^{st}$ order attitude response dynamics and flight experiments with given linear and circular path.

Guidance Law of Missiles for Control Impact-Time-and-Angle by Flight Path Angle in Three Dimensional Space (3차원 공간에서의 비행 경로각을 이용한 비행시간 및 충돌각 제어 유도법칙)

  • Jin, Sheng-Hao;Lee, Chun-Gi;Yang, Bin;Hwan, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • This paper on the assumption that the target is stationary and the velocity of missile is fixed value. In three dimensional space. Using flight path angle to simultaneous control impact-time-and-angle base on a homing guidance law. The independent variable in the nonlinear engagement model is the flight path angle of the missile. The propose homing guidance law can see the controllability of impact-time-and-angle. And also can see the processing of the missile arrive at the target. It is applied to several salvo attack scenarios. The performance of the proposed guidance law is verified by simulations.

Definition of Impact Angle and Impact Angle Control Law Against Maneuvering Target (기동표적에 대한 입사각 정의와 입사각 제어 유도법칙)

  • Kim, Hyun-Seung;Park, Sang-Sup;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.669-676
    • /
    • 2015
  • In this paper, a guidance law for intercepting maneuvering target with a desired impact angle is proposed. The proposed guidance law is modified from the optimal impact angle control law for a fixed target and given by a biased PN law with the impact angle control term in addition to the conventional PN law. Three different kinds of desired impact angles in the respect of LOS angle, flight path angle, and relative flight path angle to the target are defined. The performance of the proposed guidance law is investigated via numerical simulations for various air-to-air engagement scenarios.

Quantitative Analysis of Initial Dispersion Condition Effects on Randomness of Magnus Rotor Bomblet (Magnus Rotor 자탄의 초기 방출조건이 분산도에 미치는 영향에 대한 정량적 분석)

  • Bai, Ikhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.83-89
    • /
    • 2019
  • This research describes quantitative effects of initial dispersion conditions upon the dispersion randomness of Magnus rotor bomblets. Ratios of the missile spin rate to the missile velocity, a, flight path angles, ${\gamma}$ and altitudes, h, were changed to investigate their effects on dispersion randomness. Dispersion was analyzed through calculation of 6 degree of freedom motion equation with aerodynamic coefficients from wind tunnel experiments. In order to analyze the randomness, regression analysis is adopted to calculate the coefficient of determination. The optimized ratio of the missile spin rate to the missile velocity and flight path angle were obtained and the dispersion altitudes had more effect on the dispersion diameter and had less effect on dispersion than other parameters.

Design of Decentralized Guidance Algorithm for Swarm Flight of Fixed-Wing Unmanned Aerial Vehicles (고정익 소형무인기 군집비행을 위한 분산형 유도 알고리듬 설계)

  • Jeong, Junho;Myung, Hyunsam;Kim, Dowan;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.981-988
    • /
    • 2021
  • This paper presents a decentralized guidance algorithm for swarm flight of fixed-wing UAVs (Unmanned Aerial Vehicles). Considering swarm flight missions, we assume four representative swarm tasks: gathering, loitering, waypoint/path following, and individual task. Those tasks require several distinct maneuvers such as path following, flocking, and collision avoidance. In order to deal with the required maneuvers, this paper proposes an integrated guidance algorithm based on vector field, augmented Cucker-Smale model, and potential field methods. Integrated guidance command is synthesized with heuristic weights designed for each guidance method. The proposed algorithm is verified through flight tests using up to 19 small fixed-wing UAVs.

A Study on Autonomous Indoor Flight using Computer Vision System (컴퓨터비전을 활용한 실내 자동비행체에 관한 연구)

  • Choi, Young;Kim, Kye-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.590-593
    • /
    • 2012
  • 본 논문에서는 실내 환경에서 특정한 장소를 찾아갈 수 있는 자동비행체를, 컴퓨터비전과 스마트폰, 헬륨을 사용하여 구현 하는 방법을 제안한다. 마커를 이용하여 빌딩 내 각 정점을 표시하며, 이를 활용하여 자동으로 최단의 경로를 찾아서 그 경로를 따라 비행하는 알고리즘과 비행체의 구조를 보인다. 실험 결과 다양한 방면으로 적용 가능한 유의미한 결과를 얻었다

CFD-based Path Planning and Flight Safety Assessment for Drone Operation in Urban Areas (CFD를 이용한 도심내 드론 비행 경로 계획 및 안전성 평가)

  • Geon-Hong Kim;Ayoung Hwang;Hyoyeong Kim;Yeonmyeong Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.40-46
    • /
    • 2024
  • This study suggests a method to enhance drone flight path planning and safety evaluation in urban areas using Computational Fluid Dynamics (CFD). As the use of drones in urban environments has been growing rapidly, there is a lack of established methods for path planning and safety evaluation, which leads to a risky approach relying on experimental methods. Therefore, this research takes into account the intricate 3D fluid dynamics between drones and buildings by employing CFD to quantitatively plan flight paths and evaluate their safety. To accomplish this, the study focuses on Gimcheon Innovation City as the target area and collects relevant terrain and building data, and selects prospective flight routes. CFD analysis is then carried out to gather essential data for flight simulations and safety assessment. The safety assessments are conducted based on environmental fluid dynamics when the drone operates along the proposed flight paths

Optimal Path Planning for UAVs under Multiple Ground Threats (다수 위협에 대한 무인항공기 최적 경로 계획)

  • Kim, Bu-Seong;Bang, Hyo-Chung;Yu, Chang-Gyeong;Jeong, Eul-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.74-80
    • /
    • 2006
  • This paper addresses the trajectory optimization of Unmanned Aerial Vehicles(UAVs) under multiple ground threats like enemy's anti-air radar sites. The power of radar signal reflected by the vehicle and the flight time are considered in the performance cost to be minimized. The bank angle is regarded as control input for a 1st-order lag vehicle, and input parameter optimization method based on Sequential Quadratic Programming (SQP) is used for trajectory optimization. The proposed path planning method provides more practical trajectories with enhanced survivability than those of Voronoi diagram method.

Optimization of the Flapping Motion for the High Maneuverability Flight (기동성 비행을 위한 날갯짓 경로의 최적화)

  • Choi, Jung-Sun;Kim, Jae-Woong;Lee, Do-Hyung;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.653-663
    • /
    • 2012
  • The study considers the high maneuverability flight and path optimization is conducted to investigate the appropriate generation of the lift and thrust considering the angle of the stroke plane. The path optimization problem is defined according to the various purposes of the high maneuverability flight. The flying purposes are to maximize thrust force, lift force and both lift and thrust forces. The flapping motion of the airfoil is made by a combined sinusoidal plunging and pitching motion in each problem. The optimization process is carried out by using well-defined surrogate models. The surrogate model is determined by the results of two-dimensional computational fluid dynamics analysis. The Kriging method is used to make the surrogate model and a genetic algorithm is utilized to optimize the surrogate model. The optimization results show the flapping motions for the high maneuverable flight. The effects on the generation of lift and thrust forces are confirmed by analyzing the vortex.