• Title/Summary/Keyword: 비파괴기술

Search Result 663, Processing Time 0.023 seconds

Study on Thickness Measurement about Insulation Rubber of Steel Motor Case Using Ultrasonic Resonance (초음파 공진을 이용한 스틸 연소관의 내열 고무 두께 측정 기법 연구)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.562-569
    • /
    • 2012
  • The rubber side could be contaminated using the existing pulse echo method because the ultrasonic wave was incident on the rubber side from the interior of the steel motor case, which could lead to the critical disbond defect. To develop the test method which can be replaced the existing method, the ultrasonic wave was incident on steel face of the steel/rubber adhesive test block. Rubber resonance frequencies measured from the steel/rubber adhesive test block were in good agreement with theoretically predicted rubber resonance frequencies. This paper was described about the ultrasonic resonance method to convert the rubber resonance frequency into the rubber thickness.

  • PDF

A Study on the Bonding Process of Carbon Fiber-Thermoplastic Composite Using Induction Heating Technology (유도가열 기술을 이용한 탄소섬유-열가소성 복합재의 접합 공정에 관한 연구)

  • Kang, Chang-Soo;Yoo, Myeong-Han;Seo, Min-Kang;Choi, Bo-Kyung
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.421-425
    • /
    • 2021
  • In this study, thermoplastic composites were manufactured using a thermoplastic resin (PEEK) with the same melting temperature and a highly heat-resistant carbon UD tapes with different carbon fibers (Type A, Type B). And the bonding characteristics and mechanical characteristics of each of the two produced thermoplastic composites by induction heating welding were examined. The bonding characteristics and mechanical characteristics of the thermoplastic composites were performed using C-Scan and B-Scan, which is a non-destructive inspection, and the single lap shear test, respectively. The temperature of the carbon composites surface was monitored using a thermal image camera.

Degradation Evaluation of High Pressure Reactor Vessel in field Using Electrical Resistivity Method (전기비저항법을 이용한 고압반응기 열화도 현장평가)

  • Park, Jong-Seo;Baek, Un-Bong;Nahm, Seung-Hoon;Han, Sang-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.377-383
    • /
    • 2005
  • Because explosive fluid is used at high temperature or under high pressure in petrochemistry and refined oil equipment, the interest about safety of equipments is intensive. Specially, the safety of high pressure reactor vessel is required among them. The material selected in this study is 2.25Cr-1Mo steel that is widely used for high pressure reactor vessel material of petrochemical plant. Eight kinds of artificially aged specimens were prepared by differing from aging periods under three different temperatures. The material was iso-thermally heat treated at higher temperatures than $391^{\circ}C$ that is the operating temperature of high pressure reactor vessel. Vickers hardness properties and electrical resistivity properties about artificially aged material as well as un-aged material were measured, and master curves were made out from the correlation with larson-Miller parameter. And electrical resistivity properties as well as Victors hardness properties measured at high pressure reactor vessel of the field were compared with master curves made out in a laboratory. Degradation evaluation possibility in the field of high pressure reactor vessel by using electrical resistivity method was examined. Electrical resistivity property measured in the field is similar with that of artificially aged material in similar aging level.

Development of a Laser-Generated Ultrasonic Inspection System by Using Adaptive Error Correction and Dynamic Stabilizer (적응적 에러 보정과 다이나믹 안정기를 이용한 레이저 유도 초음파 검사 시스템 개발)

  • Park, Seung-Kyu;Baik, Sung-Hoon;Park, Moon-Cheol;Lim, Chang-Hwan;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.391-399
    • /
    • 2005
  • Laser-generated ultrasonic inspection system is a non-contact scanning inspection device with high spatial resolution and wide bandwidth. The amplitude of laser-generated ultrasound is varied according to the energy of pulse laser and the surface conditions of an object where the CW measuring laser beam is pointing. In this paper, we correct the generating errors by measuring the energy of pulse laser beam and correct the measuring errors by extracting the gain information of laser interferometer at each time. h dynamic stabilizer is developed to stably scan on the surface of an object for an laser-generated ultrasonic inspection system. The developed system generates ultrasound after adaptively finding the maximum gain time of an laser interferometer and processes the signal in real time after digitization with high speed. In this paper, we describe hardware configuration and control algorithm to build a stable laser-generated ultrasonic inspection system. Also, we confirmed through experiments that the proposed correction method for the generating errors and measuring errors is effective to improve the performance of a system.

Micromachined pH Sensor Using Open Well Structures (개방형 우물 구조를 이용한 마이크로머신형 pH 센서)

  • Kim, Heung-Rak;Kim, Young-Deog;Jeong, Woo-Cheol;Kim, Kwang-Il;Kim, Dong-Su
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.347-353
    • /
    • 2002
  • A structure of a glass electrode-type pH sensor for measuring any concentration of $H^+$ in an aqueous solution was embodied with bulk micromachining technology. Two open well structures were formed, and a reference electrode was secured by the Ag/AgCl thin film in the sloped side of the etched structure. A sensitive membrane of an indicator electrode for generating a potential by an exchange reaction to $H^+$ was made with a glass containing Na 20% or more finely so that its thickness might be $100{\mu}m$ or so, and then it was bonded to one pyramidal structure. A liquid junction for a current path was formed by filling an agar in the anisotropically etched part of the Si wafer, which had a size of $50{\mu}m{\times}50{\mu}m$, and then bonded it to the other. After complete fabrication of each part, it was filled with a 2M KCl reference solution and encapsulated the sensor structure with a cold expoxy. The potential value of fabricated pH sensor was about 90mV/pH in the standard pH solutions.

Experimental Analysis on Vibration of Composite Plate by Using FBG Sensor System (브래그 격자 센서 시스템을 이용한 복합재 평판 진동의 실험적 해석)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 2009
  • A fiber optic sensor is prospective to be applied to structural health monitoring. Especially, a fiber Bragg grating(FBG) sensor is one of the most popular sensors for the structural health monitoring. The FBG sensor has several demodulation systems for tracking the shift of the Bragg wavelength. The dynamic bandwidth is dependent on the demodulation system. In this paper, the sensing mechanism is that the slope of the optical spectrum of FBG could be used as its sensitivity when the tunable laser shot the monochromatic laser wavelength at the highest slope point. In this technique, the high sensitivity is guaranteed even though the sensing range is limited. In an example of the application, the composite plate embedding a FBG sensor was manufactured by using an autoclave method and the above sensing mechanism was applied to the composite plate. Firstly, the natural frequencies of the plate were successfully measured by the FBG sensor during the impact hammer test. Secondly, a high-power speaker was used to force the plate to be vibrated at the specific frequency that was one of the natural frequencies. During the shaking, the FBG sensor measures the dynamic characteristics and ESPI was also used to measure the mode shape. From the two dynamic tests, the availability of the FBG sensor system and the ESPI was proven as a technique for measuring the dynamic characteristics of composite structure.

Simulation of Separating Isoclinics and Isochromatics from Photoelastic Fringes of a Disk using 8-step Phase Shifting Methodology (광탄성 프린지 위상이동법을 적용한 디스크의 등경 및 등색프린지 분리법에 관한 시뮬레이션)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Sung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Photoelasticity is one of the most widely used methods for whole field stress analysis. In photoelasticity, the difference and the directions of the principal stresses we given isochromatic and isoclinic fringe patterns. Conventionally, principal stress directions are measured manually by relating the polarizer and analyzer of a plane polariscope at the same time. This is known to be the Tardy compensation method. This measurement can be very tedious and time consuming in whole field analysis. It is not possible to separate isoclincs from photoelastic fringes by conventional photoelastic technique. In this study, photoelastic theory is represented by Jones matrices and 4-steps and 8-steps phase shifting methods are described A feasibility study using computer simulation is done to separate isoclincs and isochomatics from photoelastic fringes of a circular disk under diametrical compression. Fringe patterns of the disk are generated using stress optic law. The magnitudes of isoclincs and isochromatics obtained from 8-step phase shifting method are compared with those of theories. From computer simulation, it is verified to separate isoclincs and isochomatics from photoelastic fringes.

  • PDF

Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline (배관부 부식 및 결함 평가를 위한 레이저 유도 초음파 적용 기술)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • There are many tube and pipeline in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects ran be evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique.

Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates (판재의 초음파 비선형 특성평가를 위한 Lamb Wave 기법)

  • Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.458-463
    • /
    • 2010
  • Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions; (1) phase matching, (2) non-zero power flux, (3) group velocity matching, and (4) non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter growed up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters.

An Application of Solenoid Eddy Current Sensor for Nondestructively Inspecting Deterioration of Overhead Transmission Lines due to Forest Fires (산불에 의한 가공송전선의 열화특성을 비파괴적으로 검출하기 위한 솔레노이드 와류센서의 응용)

  • Kim, Sung-Duck;Kim, Young-Dal;Jeong, Dong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.404-415
    • /
    • 2000
  • This paper describes several performances and nondestructive inspection for deterioration due to forest fires in overhead transmission lines. After discussing corrosion mechanism such as atmospheric and galvanic corrosion for aged ACSR conductors and its detection for them are presented. Through impedance analysis of a solenoid coil, it is shown that the eddy current sensor may be available to inspect severe fault or local corrosion. As the solenoid coil changes its impedance when the test conductor is inserted into the coil, it can be possible to measure deterioration degree caused by forest fires. Tensile strength, extension rate and sensor impedance are tested for some samples degraded by artificial fire. As increasing blazed period to some extent, the strength of aluminum strand begins to be reduced remarkably, while galvanized steel strand holds the similar strength to the initial value, despite of appearing a little loss of zinc layer. In general, it is shown that the sensor impedance would be increased while the tension load of conductor is reduced and the extension rate is contrarily increased. Therefore, the sensor output could exhibit the changes of mechanical performances, and would be used to detect such deterioration caused by forest fire in ACSR conductors built on the ridge of mountains. Finally, it was verified that the solenoid coil could be applicable to obtain any crucial inform for serious deterioration due to forest fires.

  • PDF