• Title/Summary/Keyword: 비틀림 진동해석

Search Result 151, Processing Time 0.022 seconds

Vibration Analysis of a Piezoelectric Disc for a Torsional Transducer (비틀림 변환기용 압전 원판의 진동 해석)

  • Lee, Jung-Hyun;Kim, Jin-Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.911-914
    • /
    • 2005
  • The vibrational characteristics of the piezoelectric disc for a torsional vibration transducer is theoretically studied in this paper. The characteristic equation of the piezoelectric annular disc has been derived from Newton's End law and Gibb's free energy equations. With an anisotropic material property of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results were compared with the values obtained by finite element analysis and experiments

  • PDF

Vibration Characteristics of Piezoelectric Torsional Transducers (압전 비틀림 변환기의 진동특성 해석)

  • 권오수;김진오
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.955-962
    • /
    • 2000
  • The paper deals with a theoretical study on the vibrational characteristics of piezoelectric torsional transducers. The differential equations of piezoelectric torsional motion have been derived in terms of the circumferential displacement and the electric potential. Applying mechanical and electrical boundary conditions has yielded the characteristic equations of natural vibration in several transducer types. Numerical results have clarified the effect of the piezoelectric phenomenon on the mechanical resonance and the effect of the elastic block of a Langevin-type transducer on the natural frequency.

  • PDF

Flexural-torsional Vibration Analysis of Thin-walled C-Section Composite Beams (박벽 C형 복합재료 보의 휨-비틀림 진동 해석)

  • Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • Free vibration of a thin-walled laminated composite beam is studied. A general analytical model applicable to the dynamic behavior of a thin-walled channel section composite is developed. This model is based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes for arbitrary laminate stacking sequence configuration. i.e. unsymmetric as well as symmetric, and various boundary conditions. A displacement-based one-dimensional finite element model is developed to predict natural frequencies and corresponding vibration modes for a thin-walled composite beam. Equations of motion are derived from the Hamilton's principle. Numerical results are obtained for thin-walled composite addressing the effects of fiber angle. modulus ratio. and boundary conditions on the vibration frequencies and mode shapes of the composites.

Steady State Amplitude Analysis for a Nonlinear Oscillating Cantilever Beam in Case of 1:1 Internal Resonance (비선형 진동 외팔보의 1:1 내부공진 경우 정상 상태 응답 해석)

  • 이수일;장서일;이장무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.376-383
    • /
    • 1996
  • 보(beam)는 기계 구조 및 항공 우주 구조물의 기본적인 요소로서, 특히 큰 동적 거동을 하는 경우는 비선형성이 두드러지게 나타나는 것으로 알려져 있고[4], 헬리콥터의 회전날개(rotor blade)나 두께가 얇은 고속회전 축등의 경우에는 비틀림(torsion)과 굽힘(bending) 운동이 비선형 연성되어 나타나게 된다. 이러한 비선형 연성 효과를 갖는 경우에는 운동의 양상이 복잡하게 전개된다. 따라서 본 연구에서는 비선형 연성운동이 생기는 이러한 단순 외팔보에 대해 비선형 진동 특성을 파악하고 각 비틀림(internal resonance)현상[5]에 따른 정상상태 진폭 응답의 해석을 그 목적으로 한다.

  • PDF

Vibration Analysis of a Rotating Blade Considering Pre-twist Angle, Cross Section Taper and a Concentrated Mass (초기 비틀림 각과 단면 테이퍼 그리고 집중질량을 갖는 회전하는 블레이드의 진동해석)

  • Kim, Hyung Yung;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.338-346
    • /
    • 2013
  • Equations of motion of a rotating blade considering pre-twist angle, cross section taper and a concentrated mass are derived using the hybrid deformation variable modeling method. For the modeling of a concentrated mass which is located at an arbitrary position of the blade, a Dirac delta function is employed for the mass density function. The final equations for the vibration analysis are transformed into a dimensionless form using several dimensionless parameters. The effects of the dimensionless parameters on the vibration characteristics of the rotating blade are investigated through numerical analysis.

Flexural-Torsional Free Vibrations of Circular Strip Foundation with Variable Breadth on Pasternak Soil (Pasternak지반으로 지지된 변화폭 원호형 띠기초의 휨-비틀림 자유진동)

  • Lee, Byoung Koo;Park, Kwang Kyou;Kang, Hee Jong;Yoon, Hee Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.539-548
    • /
    • 2007
  • This paper deals with flexural-torsional free vibrations of the circular strip foundation with the variable breadth on Pasternak soil. The cross-section of the strip foundation is chosen as the rectangular one with the constant thickness and variable breadth, which is symmetrical about the mid-arc. Also, the foundation that supports the circular strip is modeled as the Pasternak soil with the shear layer. Ordinary differential equations accompanying the boundary conditions are derived. In the governing equations, the transverse, rotatory and torsional inertias are included. These equations are solved numerically and four lowest frequencies are obtained. In the numerical results, the effects of foundation parameters on frequencies are extensively investigated. It is expected that the theories and numerical results of this study can be used in the dynamic design of strip foundations.

Vibration Analysis of Rotating Pre-twisted Inward Beams with a Concentrated Mass (집중질량과 초기 비틀림을 갖는 회전중심방향 자유단 외팔보의 진동해석)

  • Lee, Gun Ho;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.384-390
    • /
    • 2015
  • The vibration analysis of rotating inward beams considering the pre-twisted is presented based on Euler-Bernoulli beam theory. The frequency equations, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of angular speed, and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their result.

Seismic Response of a High-Rise RC Bearing-Wall Structure with Irregularities of Weak Story and Torsion at Bottom Stories (저층부에 약층과 비틀림 비정형성을 가진 고층 비정형 RC벽식 구조물의 지진응답)

  • 이한선;고동우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.81-91
    • /
    • 2003
  • Recently, many high-rise reinforced concrete(RC) bearing-wall structures of multiple uses have been constructed, which have the irregularities of weak(or soft) story and torsion at the lower stories simultaneously. The study stated herein was performed to investigate seismic performance of such a high-rise RC structure through a series of shaking table tests of a 1: 12 model. Based on the observations of the test results, the conclusions are drawn as follows: 1) Accidental torsion due to the uncertainty on the properties of structure can be reasonably predicted by using the dynamic analysis than by using lateral force procedure. 2) The mode coupled by translation and torsion induced the overturning moments not only in the direction of excitations but also in the perpendicular direction: The axial forces in columns due to this transverse overturning moment cannot be adequately predicted using the existing mode analysis technique, and 3) the hysteretic curve and the strength diagram between base shear and torque(BST) clearly reveal the predominant mode of vibrations and the failure mode.

Modal Analysis of a Rotating Multi-Packet Pre-twisted Blade System (초기 비틀림각을 갖는 회전하는 다중 패킷 블레이드 시스템의 고유 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.393-399
    • /
    • 2008
  • A modeling method for the modal analysis of a pre-twisted multi-packet blade system undergoing rotational motion is presented in this paper. Blades are idealized as pre-twisted cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. The coupling effect between chordwise and flapwise bending deflection is also considered. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters and the number of packets as well as blades on the modal characteristics of the rotating multi-packet pre-twisted blade system are investigated with some numerical examples.

  • PDF