• Title/Summary/Keyword: 비탄성 동적해석

Search Result 186, Processing Time 0.028 seconds

Dynamic behavior of the bridge with seismic isolation bearing (내진 분리 베어링이 설치된 교량의 동적 거동)

  • 전귀현
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.83-90
    • /
    • 1994
  • This study presents the nonlinear dynamic analysis method of the bridge with the seismic isolation bearing. Also the numerical analyses are performed for investigating the response characteristics of the bridge isolated with the lead-rubber bearing under the ground motions compatible to Korea bridge design response spectra. It is found that the pier design force can be considerably smaller than the one for the bridge with the fixed bearing. It is observed that the lead-rubber bearing has the great effectiveness for reducing the longitudinal seismic force in case of the bridges with low and medium periods. Therefore the seismic isolation bearing can be used instead of the fixed bearing for the economic and safe design of the bridge.

  • PDF

Peridynamic Impact Fracture Analysis of Multilayered Glass with Nonlocal Ghost Interlayer Model (비국부 층간 결합 모델을 고려한 다중적층 유리의 페리다이나믹 충돌 파괴 해석)

  • Ha, Youn Doh;An, Tae Sick
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.373-380
    • /
    • 2018
  • We present the peridynamic dynamic fracture analysis to solve impact fracturing of multilayered glass impacted by a high-velocity object. In the most practical multilayered glass structures, main layers are glued by thin elastic masking films. Thus, it is difficult and expensive to construct the numerical model for such a multilayered structure. In this paper, we employ efficient numerical modeling of multilayered structures with a nonlocal ghost interlayer model in which ghost particles are distributed between main layers and they are interacting with each other in peridynamic way. We also consider a simple nonlocal contact condition in peridynamic frameworks to solve impact and penetration of the high-velocity impactor to the multilayered structure. Finally we can confirm the fracture capabilities of the method using a multilayered glass model in which 7 glass layers and a single elastic backing layer are affixed by polyvinyl butyral films.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.

Evaluation of the Dynamic P-Y Curves of Soil-Pile System in Liquefiable Ground (액상화 가능성이 있는 지반에 놓인 지반-말뚝 시스템의 동적 p-y 곡선 연구)

  • Han, Jin-Tae;Kim, Sung-Ryul;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.141-147
    • /
    • 2007
  • Various approaches have been developed for the dynamic response analysis of piles. In one of the approaches, the soil-pile interaction is approximated by using parallel nonlinear springs, namely the p-y curves. Currently available p-y curve recommendations are based on static and cyclic lateral load tests. Other researchers have attempted to extend the p-y curves by incorporating the effects of liquefaction on soil-pile interaction and derived scaling factors of p-y curves to account fur the liquefaction. However, opinions on the scaling factors vary. In this study, the sealing factors, which reflect the variation of the elastic moduli of surrounding soils, were established combining the relationship between excess pore pressures and the natural frequencies of a soil-pile system obtained from Ig shaking table tests and the relationship between the elastic moduli of surrounding soils and the natural frequencies of a soil-pile system obtained from numerical analyses. As a result, the scaling factors were presented in an exponential function.

On the Oil Film Behaviors of Engine Bearing Considering Crankshaft Misalignment (크랭크축 경사도를 고려한 엔진 베어링의 유막거동에 관한 연구)

  • Kim, Han-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3119-3124
    • /
    • 2010
  • The purpose of this paper is to analyze dynamic behaviors of the oil film thickness and engine bearings in both aligned and misaligned operation conditions of a crankshaft using computer simulation techniques. A crankshaft as an elastic body is modeled for a misaligned crankshaft which is very important design parameter of the film thickness and engine bearings. In this analysis, a dynamic characteristic of a minimum oil film is analyzed based on the elastohydrodynamic lubrication theory. The boundary conditions for analyzing the film behaviors include non-linear constraint forces and bending moments in engine bearings. The more expedient model of an engine bearing is extended to consider the effect of crankshaft misalignment. The computed results indicate that the minimum oil film thickness that causes a major influence on the performance of engine bearings has showed a decrease of 16% to 24% for the misaligned crankshaft compared with an aligned crankshaft. The computed results show that the misalignment of a crankshaft inevitably brings the reduction of minimum oil film thickness and this may increase the failure of a bearing. These results as design parameters are very useful for a bearing designer as a firm reference data of an automotive engine.

Static Aeroelastic Analysis for Aircraft Wings using CFD/CST Coupling Methodology (전산유체/전산구조 연계 방법을 사용한 항공기날개의 정적 공탄성 해석)

  • Choi, Dong-Soo;Jun, Sang-Ook;Kim, Byung-Kon;Park, Soo-Hyun;Lee, Dong-Ho;Lee, Kyung-Tae;Jun, Seung-Moon;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.287-294
    • /
    • 2007
  • A static aeroelastic analysis for supersonic aircraft wing equipped with external store under the wing lower surface is performed using computational fluid dynamics (CFD) and computational structural technology(CST) coupling methodology. Two mapping algorithms, which are the pressure mapping algorithm and the displacement mapping algorithm, are used for CFD/CST coupling. A three-dimensional unstructured Euler code and finite element analysis program are used to calculate the flow properties and the structural displacements, respectively. The coupling procedure is repeated in an iterative manner until a specified convergence criterion is satisfied. Static aeroelastic analysis for a typical supersonic flight wing is performed and final converged wing configuration is obtained after several iterations.

Static and Free Vibration Analysis of FGM Plates on Pasternak Elastic Foundation (Pasternak 탄성지반위에 놓인 점진기능재료 판의 정적 및 자유진동 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.529-538
    • /
    • 2016
  • The simplified plate theory is presented for static and free vibration analysis of power-law(P) and sigmoid(S) Functionally Graded Materials(FGM) plates. This theory considers the parabolic distribution of the transverse shear stress, and satisfies the condition that requires the transverse shear stress to be zero on the upper and lower surfaces of the plate, without the shear correction factor. The simplified plate theory uses only four unknown variables and shares strong similarities with classical plate theory(CPT) in many aspects such as stress-resultant expressions, equation of motion and boundary conditions. The material properties of the plate are assumed to vary according to the power-law and sigmoid distributions of the volume fractions of the constituents. The Hamilton's principle is used to derive the equations of motion and Winkler-Pasternak elastic foundation model is employed. The results of static and dynamic responses for a simply supported FGM plate are calculated and a comparative analysis is carried out. The results of the comparative analysis with the solutions of references show relevant and accurate results for static and free vibration problems of FGM plates. Analytical solutions for the static and free vibration problems are presented so as to reveal the effects of the power law index, elastic foundation parameter, and side-to-thickness ratio.

Evaluation of Nonlinear Deformational Characteristics of Soils from Laboratory and Field Tests (실내시험 및 현장시험을 통한 지반의 비선형 변형특성 평가)

  • 김동수;권기철
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.89-100
    • /
    • 1997
  • It is very improtant to evaluate the reliable nonlinear deformational characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. Field testings such as crosshole and pressuremeter tests can be used to determine the modulus of soils under in-situ conditions, but it is not possible to determine the modulus over the entire strain amplitude range. Laboratory methods such as resonant column 1 torsional shear test can be used to determine the modulus over the whole strain amplitude range, but it is very difficult to obtain the representative undisturbed samples on the sixte. For the reliable evaluation of nonlinear deformation characteristics of soils on a typical site, small strain modulus obtained from field testy and nomalized modulus reduction curve determined by laboratory bests need to be combined. In this paper, laboratory and Held testy were performed at a sixte which consisted of granite wearthered residual boils to evaluate the nonlinear deformational characteristics of coils such as the effects of strain amplitude, loading frequency, confining pressure and sample disturbance. It has been shorn that when the effects of these factors are properly taken into account, the stiffness values evaluated by various field and labrotary tests are comparable to each other fairly well. Finally, the procedure to evaluate the nonlinear deformstional characteristics of the sixte was proposed.

  • PDF

Inelastic Seismic Response Control of the RC Framed Apartment Building Structures Using Exterior-Installed Kagome Damping System (외부접합형 카고메 감쇠시스템을 사용한 철근콘크리트 라멘조 공동주택 비탄성 지진 응답 제어)

  • Hur, Moo-Won;Chun, Young-Soo;Lee, Sang-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.58-65
    • /
    • 2016
  • Various passive energy dissipation systems have been proposed and widely applied to real building structures under seismic load due to their high energy-dissipation potential and low cost for installation and maintenance. This paper presents nonlinear dynamic analysis results of the effectiveness of exterior-installed Kagome damping system(EKDS) in passively reducing seismic response. Kagome damping system proposed by previous studies has isotropic and bi-linear hysteretic characteristics and the installation configuration is newly presented in this study. The 15 and 20 story RC framed apartment buildings are used for verifying the effectiveness of the EKDS. The stiffness ratio of the damper supporting column to the original building, the number of the dampers, and the installed stories were considered as design parameters. Numerical results demonstrated that the EKDS were very effective in reducing both the two horizontal directional seismic responses by just using smaller number of exterior-installed damping system when compared to the traditional one-directional inter-story installed damping systems.

A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces (선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구)

  • Ku-Kyun Shin;Sa-Soo Kim;Sung-Wan Son
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.152-172
    • /
    • 1992
  • The ship sailing among waves are suffered the various wave loads that comes from its motion throughout its life. Because there are dynamic, the analysis of ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship mouton calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, relatively ship's depth, is induced the large ship motion, so the ship section configulation below water line is rapidly changed at each time. This results in non-linear problem. Considering above situation in this paper, the strength analysis method is introduced for the hull glider among waves considering non-linear hydrodynamic forces. This paper considers that the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom and bow flare impact forces estimated by momentum slamming theory, in which the ship is idealized as a hollow thin-walled box beam using thin-walled beam theory and the finite element method. This method is applied to 40,000 Ton Double-Skin Tanker and attention is paid to the influence of the response of ship speed, wave length and wave height compared with linear strip theory.

  • PDF