• Title/Summary/Keyword: 비지도 학습.

Search Result 225, Processing Time 0.031 seconds

Unsupervised Domain Adaptive Re-identification based on Cluster Consistency (클러스터 일관성을 기반으로 한 비지도 도메인 적응 사람 재인식)

  • Oh, Sang-Yup;Cho, Nam-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.109-112
    • /
    • 2020
  • 사람 재인식을 수행하기 위해서 많은 연구들이 진행되어 좋은 결과들을 보였다 그러나 이 결과들은 라벨이 있는 도메인에서의 지도 학습으로 얻은 결과들이었다. 라벨이 없는 도메인에서의 사람 재인식의 성능은 아직 많이 부족한 상태이다. 사람 재인식을 수행하고자 하는 목표 도메인에 반해 주어진 소스 도메인에서는 라벨이 풍부하다. 지금까지의 논문에서는 소스 도메인에서의 사람 이미지를 목표 도메인의 이미지처럼 만들어서 소스 도메인에서 높은 성능을 보이는 사람 재인식기를 목표 도메인에서도 잘 동작하도록 학습하는 방법들이 주를 이루었다. 하지만 이 방법에서는 소스 도메인의 사람 이미지를 목표 도메인의 이미지와 비슷하게 만들기만하고 사람의 신원에 대한 일관성을 유지시키지는 못하였다. 본 논문에서는 비지도 도메인 적응 사람 재인식을 수행하기 위해 클러스터 일관성(cluster consistency)을 유지하는 기법을 제안한다. 제안한 방법은 사람의 신원에 대한 일관성을 유지시켜서 사람 재인식의 성능을 높인다.

  • PDF

Detection of outliers in pet sensor data through DASVDD (DASVDD 모형을 통한 반려동물 센서 데이터 이상치 탐지)

  • JeongHyeon Park;JunHyeok Go;SiUng Kim;Nammee Moon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1208-1210
    • /
    • 2023
  • 이상치는 주로 저빈도로 발생하기 때문에, 이상치 탐지 분야에서는 정상 데이터만을 이용한 비지도 기반 학습 모델을 사용하는 방법들이 제안되었다. 따라서, 본 논문에서는 반려동물 센서 데이터를 이용해 비지도 기반 모델인 DASVDD을 활용하여 이상치를 탐지한다. 하지만 데이터셋에 이상치가 존재하지 않아 반려동물이 고빈도로 보여주는 A행동군(서다, 앉다, 엎드리다, 눕다, 걷다), 저빈도로 보여주는 B행동군(킁킁대다, 먹다)으로 분리하여 학습을 진행한다. 모델의 성능은 ROC-AUC을 기준으로 79.05%의 성능을 보여주는 것을 확인하였다.

Beta-wave Correlation Analysis Model based on Unsupervised Machine Learning (비지도학습 머신러닝에 기반한 베타파 상관관계 분석모델)

  • Choi, Sung-Ja
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.221-226
    • /
    • 2019
  • The characteristic of the beta wave among the EEG waves corresponds to the stress area of human perception. The over-bandwidth of the stress is extracted by analyzing the beta-wave correlation between the low-bandwidth and high-bandwidth. We present a KMeans clustering analysis model for unsupervised machine learning to construct an analytical model for analyzing and extracting the beta-wave correlation. The proposed model classifies the beta wave region into clusters of similar regions and identifies anomalous waveforms in the corresponding clustering category. The abnormal group of waveform clusters and the normal category leaving region are discriminated from the stress risk group. Using this model, it is possible to discriminate the degree of stress of the cognitive state through the EEG waveform, and it is possible to manage and apply the cognitive state of the individual.

Optimized Normalization for Unsupervised Learning-based Image Denoising (비지도 학습 기반 영상 노이즈 제거 기술을 위한 정규화 기법의 최적화)

  • Lee, Kanggeun;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.45-54
    • /
    • 2021
  • Recently, deep learning-based denoising approaches have been actively studied. In particular, with the advances of blind denoising techniques, it become possible to train a deep learning-based denoising model only with noisy images in an image domain where it is impossible to obtain a clean image. We no longer require pairs of a clean image and a noisy image to obtain a restored clean image from the observation. However, it is difficult to recover the target using a deep learning-based denoising model trained by only noisy images if the distribution of the noisy image is far from the distribution of the clean image. To address this limitation, unpaired image denoising approaches have recently been studied that can learn the denoising model from unpaired data of the noisy image and the clean image. ISCL showed comparable performance close to that of supervised learning-based models based on pairs of clean and noisy images. In this study, we propose suitable normalization techniques for each purpose of architectures (e.g., generator, discriminator, and extractor) of ISCL. We demonstrate that the proposed method outperforms state-of-the-art unpaired image denoising approaches including ISCL.

Deep Learning based Domain Adaptation: A Survey (딥러닝 기반의 도메인 적응 기술: 서베이)

  • Na, Jaemin;Hwang, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.511-518
    • /
    • 2022
  • Supervised learning based on deep learning has made a leap forward in various application fields. However, many supervised learning methods work under the common assumption that training and test data are extracted from the same distribution. If it deviates from this constraint, the deep learning network trained in the training domain is highly likely to deteriorate rapidly in the test domain due to the distribution difference between domains. Domain adaptation is a methodology of transfer learning that trains a deep learning network to make successful inferences in a label-poor test domain (i.e., target domain) based on learned knowledge of a labeled-rich training domain (i.e., source domain). In particular, the unsupervised domain adaptation technique deals with the domain adaptation problem by assuming that only image data without labels in the target domain can be accessed. In this paper, we explore the unsupervised domain adaptation techniques.

단안 깊이 추정 기술 동향

  • Kim, Won-Jun
    • Broadcasting and Media Magazine
    • /
    • v.27 no.2
    • /
    • pp.43-50
    • /
    • 2022
  • 한 장의 이미지로부터 장면의 깊이 정보를 추정하는 기술은 자율 주행, 실내외 로봇 기반 서비스 등 다양한 응용 분야에서 널리 적용되고 있다. 심층 학습을 이용한 알고리즘이 활발히 연구되면서 이러한 단안 깊이 추정 기술의 산업 분야 적용 범위는 확대되고 있는 추세이다. 그러나, 깊이 경계 정보를 정밀하게 예측하는데 여전히 많은 어려움이 있으며, 다양한 실제 환경에서 획득한 3차원 깊이 정보 구축 또한 많은 비용이 소모되는 문제점이 있다. 본 고에서는 이러한 문제를 해결하기 위해 최근 활발히 연구되고 있는 심층신경망 기반 단안 깊이 추정 연구의 최신 동향을 소개하고자 한다. 지도 학습 기반 방법부터 최근 활발히 연구되고 있는 비지도 학습 방법까지 상세히 살펴본다. 이와 더불어 대표 방법에 대한 성능 평가 결과도 간략히 제시하고자 한다.

Fluent Text Generation Using GANs with Graph-search (GAN에서 그래프 탐색을 이용한 유창한 문장 생성)

  • Oh, Jinyoung;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.404-408
    • /
    • 2019
  • 비지도 학습 모델인 GAN은 학습 데이터 구축이 어려운 여러 분야에 활용되고 있으며, 알려진 문제점들을 보완하기 위해 다양한 모델 결합 및 변형으로 발전하고 있다. 하지만 문장을 생성하는 GAN은 풀어야 할 문제가 많다. 그중에서도 문제가 되는 것은 완성도가 높은 문장을 생성하는데 어려움이 있다는 것이다. 본 논문에서는 단어 그래프를 구성하여 GAN의 학습에 도움을 주며 완성도가 높은 문장을 생성하는 방법을 제안한다.

  • PDF

Face Morphing Using Generative Adversarial Networks (Generative Adversarial Networks를 이용한 Face Morphing 기법 연구)

  • Han, Yoon;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.435-443
    • /
    • 2018
  • Recently, with the explosive development of computing power, various methods such as RNN and CNN have been proposed under the name of Deep Learning, which solve many problems of Computer Vision have. The Generative Adversarial Network, released in 2014, showed that the problem of computer vision can be sufficiently solved in unsupervised learning, and the generation domain can also be studied using learned generators. GAN is being developed in various forms in combination with various models. Machine learning has difficulty in collecting data. If it is too large, it is difficult to refine the effective data set by removing the noise. If it is too small, the small difference becomes too big noise, and learning is not easy. In this paper, we apply a deep CNN model for extracting facial region in image frame to GAN model as a preprocessing filter, and propose a method to produce composite images of various facial expressions by stably learning with limited collection data of two persons.

Novel Intent Category Discovery using Contrastive Learning (대조학습을 활용한 새로운 의도 카테고리 발견)

  • Seungyeon Seo;Gary Geunbae Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.107-112
    • /
    • 2023
  • 라벨 데이터 수집의 어려움에 따라 라벨이 없는 데이터로 학습하는 준지도학습, 비지도학습에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 그의 일환으로 Novel Intent Category Discovery(NICD) 문제를 제안하고 NICD 연구의 베이스라인이 될 모델을 소개한다. NICD 문제는 라벨이 있는 데이터와 라벨이 없는 데이터의 클래스 셋이 겹치지 않는다는 점에서 기존 준지도학습의 문제들과 차이가 있다. 제안 모델은 RoBERTa를 기반으로 두 개의 분류기를 추가하여 구성되며 라벨이 있는 데이터셋과 라벨이 없는 데이터셋에서 각각 다른 분류기를 사용하여 라벨을 예측한다. 학습방법은 2단계로 먼저 라벨이 있는 데이터셋으로 요인표현을 학습한다. 두 번째 단계에서는 교차 엔트로피, 이항교차 엔트로피, 평균제곱오차, 지도 대조 손실함수를 NICD 문제에 맞게 변형하여 학습에 사용한다. 논문에서 제안된 모델은 라벨이 없는 데이터셋에 대해 이미지 최고성능 모델보다 24.74 더 높은 정확도를 기록했다.

  • PDF

Semi-Supervised Data Augmentation Method for Korean Fact Verification Using Generative Language Models (자연어 생성 모델을 이용한 준지도 학습 기반 한국어 사실 확인 자료 구축)

  • Jeong, Jae-Hwan;Jeon, Dong-Hyeon;Kim, Seon-Hun;Gang, In-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.105-111
    • /
    • 2021
  • 한국어 사실 확인 과제는 학습 자료의 부재로 인해 연구에 어려움을 겪고 있다. 본 논문은 수작업으로 구성된 학습 자료를 토대로 자연어 생성 모델을 이용하여 한국어 사실 확인 자료를 구축하는 방법을 제안한다. 본 연구는 임의의 근거를 기반으로 하는 주장을 생성하는 방법 (E2C)과 임의의 주장을 기반으로 근거를 생성하는 방법 (C2E)을 모두 실험해보았다. 이때 기존 학습 자료에 위 두 학습 자료를 각각 추가하여 학습한 사실 확인 분류기가 기존의 학습 자료나 영문 사실 확인 자료 FEVER를 국문으로 기계 번역한 학습 자료를 토대로 구성된 분류기보다 평가 자료에 대해 높은 성능을 기록하였다. 또한, C2E 방법의 경우 수작업으로 구성된 자료 없이 기존의 자연어 추론 과제 자료와 HyperCLOVA Few Shot 예제만으로도 높은 성능을 기록하여, 비지도 학습 방식으로 사실 확인 자료를 구축할 수 있는 가능성 역시 확인하였다.

  • PDF