Fig. 1. Processing for KMeans clustering
Fig. 2. KMean model for beta-wave corelation
Fig. 3. Brainwave analyzer on spark
Fig. 4. Analyzer of beta-wave acquisitions dataset
Fig. 5. KMeans model applied for beta-wave dataset
Fig. 6. Verification about KMeans model of optimized k-value in beta-wave dataset
Table 1. Frequency bands of brainwave
Table 2. Algorithm for beta wave analyze model
Table 3. Using tools for the platform of construction
References
- E. A. Larsen. (2011). Classification of EEG signals in a brain-computer interface system, Master's thesis, Institutt for datateknikk og informasjonsvitenskap.
- Y. P. Ma et al. (2014, August). Emotional identification during mobile RF Radiation. In Control and System Graduate Research Colloquium (ICSGRC), 2014 IEEE 5th (pp. 285-289). IEEE.
- R. S. S. A. Kadir et al. (2009, March). Analysis of correlation between body mass index (BMI) and brain wave using EEG for Alpha and Beta frequency band. In Signal Processing & Its Applications, 278-283.
- K. Crowley, A. Sliney, I. Pitt & D. Murphy. (2010, July). Evaluating a brain-computer interface to categorise human emotional response. In Advanced Learning Technologies (ICALT), 2010 IEEE 10th International Conference on (pp. 276-278).
- N. Sulaiman et al. (2012, February). Development of EEG-based stress index. In Biomedical Engineering (ICoBE), 2012 International Conference on (pp. 461-466). IEEE.
- P. Reanaree, P. Tananchana, W. Narongwongwathana & C. Pintavirooj. (2016, December). Stress and office-syndrome detection using EEG, HRV and hand movement. In Biomedical Engineering International Conference (BMEiCON), (pp. 1-4). IEEE.
- T. Teramae, D. Kushida, F. Takemori & A. Kitamura. (2010, August). Estimation of Feeling Based on EEG by Using NN and k-means Algorithm for Massage System. In SICE Annual Conference 2010, Proceedings of (pp. 1542-1547). IEEE.
- A. Azhari & L. Hernandez. (2016). Brainwaves feature classification by applying K-Means clustering using single-sensor EEG. International Journal of Advances in Intelligent Informatics, 2(3), 167-173. https://doi.org/10.26555/ijain.v2i3.86
- J. Han, J. Pei & M. Kamber. (2011). Data mining: concepts and techniques. Elsevier.
- S. J. Choi & B. G. Kang. (2014). Prototype design and implementation of an automatic control system based on a BCI. Wireless personal communications, 79(4), 2551-2563. https://doi.org/10.1007/s11277-014-1861-5
- S. J. Choi, B. G. Kang & G. J. Kim. (2018). The Brainwave Analyzer of Server System Applied Security Functions. Journal of Digital Convergence, 16(12), 343-349. https://doi.org/10.14400/JDC.2018.16.12.343
- L. Li & D. Yao. (2007). A new method of spatio-temporal topographic mapping by correlation coefficient of k-means cluster. Brain topography, 19(4), 161-176. https://doi.org/10.1007/s10548-006-0017-7
- J. H. Yang, Y. S. Park & S. H. Lee. (2017). Text extraction in images using simplify color and edges pattern analysis. Journal of the Korea Convergence Society, 8(8), 33-40. https://doi.org/10.15207/JKCS.2017.8.8.033
- I. K. Lim, D. J. Park & H. J. Cho. (2018). Development of Procurement Announcement Analysis Support System. Journal of the Korea Convergence Society, 9(8), 53-60. https://doi.org/10.15207/JKCS.2018.9.8.053
- M. A. Alsheikh, D. Niyato, S. Lin, H. P. Tan & Z. Han. (2016). Mobile big data analytics using deep learning and apache spark. IEEE network, 30(3), 22-29. https://doi.org/10.1109/MNET.2016.7474340
- D. Aloise, A. Deshpande, P. Hansen & P. Popat. (2009). NP-hardness of Euclidean sum-of-squares clustering. Machine learning, 75(2), 245-248. https://doi.org/10.1007/s10994-009-5103-0
- S. Dasgupta & Y. Freund. (2009). Random projection trees for vector quantization. IEEE Transactions on Information Theory, 55(7), 3229-3242. https://doi.org/10.1109/TIT.2009.2021326