Exploring distributional patterns of multivariate data is very essential in understanding the characteristics of given data set, as well as in building plausible models for the data. For that purpose, low-dimensional visualization methods have been developed by many researchers along various directions. As one of methods, Kohonen's SOM (Self-Organizing Map) is prominent. SOM compresses the volume of the data, yields abstraction from the data and offers visual display on low-dimensional grids. Although it is proven quite effective, it has one undesirable property: SOM's display is discrete. In this study, we propose two techniques for enhancing quality of SOM's display, so that SOM's display becomes continuous. The proposed methods are demonstrated in two numerical examples.
Self-organizing map (SOM), a unsupervised learning neural network, has been developed by T. Kohonen since 1980's. Main application areas were pattern recognition and text retrieval. Because of that, it has not been spread to statisticians until late. Recently, SOM's are frequently drawn in data mining fields. Kohonen's SOM, however, needs improvements to become a statistician's standard tool. First, there should be a good guideline as for the size of map. Second, an enhanced visualization mode is wanted. In this study, principal components self-organizing map (PC-SOM), a modification of Kohonen's SOM, is proposed to meet such needs. PC-SOM performs one-dimensional SOM during the first stage to decompose input units into node weights and residuals. At the second stage, another one-dimensional SOM is applied to the residuals of the first stage. Finally, by putting together two stages, one obtains two-dimensional SOM. Such procedure can be easily expanded to construct three or more dimensional maps. The number of grid lines along the second axis is determined automatically, once that of the first axis is given by the data analyst. Furthermore, PC-SOM provides easily interpretable map axes. Such merits of PC-SOM are demonstrated with well-known Fisher's iris data and a simulated data set.
In accommodation sharing economy, customers take a risk of uncertainty about product quality, which is an important factor affecting users' satisfaction. This risk can be lowered by the information disclosed by the facility provider. Self-presentation of the hosts can make a positive effect on listing performance by eliminating psychological distance through emotional interaction with users. This paper analyzed the self-presentation text provided by Airbnb hosts and found key aspects in the text. In order to extract the aspects from the text, host descriptions were separated into sentences and applied the Attention-Based Aspect Extraction method, an unsupervised neural attention model. Then, we investigated the relationship between aspects in the host description and the listing performance via linear regression models. In order to compare their impact between the three facility types(Entire home/apt, Private rooms, and Shared rooms), the interaction effects between the facility types and the aspect summaries were included in the model. We found that specific aspects had positive effects on the performance for each facility type, and provided implication on the marketing strategy to maximize the performance of the shared economy.
KIPS Transactions on Software and Data Engineering
/
v.10
no.11
/
pp.501-512
/
2021
Recently, a breakthrough has been made in the NLP area by Transformer techniques based on encoder-decoder. However, this only can be used in mainstream languages where millions of dataset are well-equipped, such as English and Chinese, and there is a limitation that it cannot be used in non-mainstream languages where dataset are not established. In addition, there is a deflection problem that focuses on the beginning of the document in mechanical summarization. Therefore, these methods are not suitable for documents with flows such as fairy tales and novels. In this paper, we propose a hybrid summarization method that does not require a dataset and improves the deflection problem using GAN with two adaptive discriminators. We evaluate our model on the CNN/Daily Mail dataset to verify an objective validity. Also, we proved that the model has valid performance in Korean, one of the non-mainstream languages.
Journal of the Korea Society of Computer and Information
/
v.29
no.5
/
pp.155-164
/
2024
This study proposes an unsupervised learning-based clustering model to estimate the ESG ratings of domestic public institutions. To achieve this, the optimal number of clusters was determined by comparing spectral clustering and k-means clustering. These results are guaranteed by calculating the Davies-Bouldin Index (DBI), a model performance index. The DBI values were 0.734 for spectral clustering and 1.715 for k-means clustering, indicating lower values showed better performance. Thus, the superiority of spectral clustering was confirmed. Furthermore, T-test and ANOVA were used to reveal statistically significant differences between ESG non-financial data, and correlation coefficients were used to confirm the relationships between ESG indicators. Based on these results, this study suggests the possibility of estimating the ESG performance ranking of each public institution without existing ESG ratings. This is achieved by calculating the optimal number of clusters, and then determining the sum of averages of the ESG data within each cluster. Therefore, the proposed model can be employed to evaluate the ESG ratings of various domestic public institutions, and it is expected to be useful in domestic sustainable management practice and performance management.
Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.416-419
/
2008
모바일 상의 단문메시지 서비스는 등장한 이례 꾸준히 사용량이 증가하는 추세이며, 현재 세계적으로 가장 많이 사용되는 모바일 서비스이다. 모바일 기기에서 단문 메시지 작성의 불편함을 개선하기 위한 기술로 하드웨어적인 입력 방법 개선과 소프트웨어적인 입력보조 기능이 꾸준히 개발되었다. 소프트웨어적인 방법은 범용성이 넓고 적용이 쉽다는 장점이 있지만 제한된 자원에서 구현상의 어려움이 있어 연구가 미비한 분야이다. 본 논문은 소프트웨어적으로 단문 메시지의 작성을 보조하는 방법을 제시한다. 일상 생활의 반복성에 초점을 맞추어 반복 작성될 메시지에 대해 기존의 메시지를 제시해 자동적으로 응답하도록 하는 방법을 제안한다. 자동적으로 응답 메시지를 선택하기 위한 비교사 학습과 추론 기술로 "메시지 네트워크"를 제안하고, 실험을 통해 고안한 방법의 가능성을 보였다. 실험 결과로부터 반복적인 메시지의 작성에 제시한 방법이 유용함을 알 수 있었다.
Park Sun;Lee Ju-Hong;Ahn Chan-Min;Park Tae-Su;Kim Deok-Hwan
Proceedings of the Korean Information Science Society Conference
/
2006.06a
/
pp.391-393
/
2006
인터넷의 급속한 확산과 대량 정보의 이동은 문서의 요약을 더욱 필요로 하고 있다. 본 논문은 비음수 행렬 인수분해로(NMF, non-negative matrix factorization) 얻어진 비음수 의미 가변 행렬(NSVM, non-negative semantic variable matrix)을 이용하여 자동으로 포괄적 문서요약 하는 새로운 방범을 제안하였다. 제안된 방법은 인간의 인식 과정과 유사한 비음수 제약을 사용한다. 이 결과 잠재의미색인에 비해 더욱 의미 있는 문장을 선택하여 문서를 요약할 수 있다. 또한, 비지도 학습에 의한 문서요약으로 사전 전문가에 의한 학습문장이 필요 없으며, 적은 계산비용을 통하여 쉽게 문장을 추출할 수 있는 장점을 갖는다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2002.11a
/
pp.296-300
/
2002
We proposed a method of a pattern classification using unsupervised teaming rules, SOFM, and supervised teaming rules, Multilayer neural network. Establish result that classify and get input pattern using SOFM by initial weighting vector of Multilayer neural network and target value. Got superior Performance as result that do simulation about face image to confirm usefulness of way that propose.
퍼블릭 클라우드 시장이 성장하면서 퍼블릭 클라우드에서 호스팅하는 컴퓨팅 자원으로 구축된 거대하고 복잡한 IT 시스템이 점차 많아지고 있다. 이러한 시스템의 증가는 서비스 장애 발생 확률을 높이므로, 장애 관리 및 선제 감지를 위한 퍼블릭 클라우드 자원의 이상 감지 연구에 대한 수요 또한 증가하고 있다. 그러나 연구에 활용할 수 있는 벤치마크 데이터셋이 없다는 점과, 실제 자원에서 추출할 수 있는 데이터는 레이블링이 되어 있지 않은 불균형 데이터라는 점 때문에 관련 연구가 부족한 상황이다. 이러한 문제를 해결하고자 본 논문은 비지도 방식의 표현 학습 기반 딥러닝 모델을 활용한 이상 감지 시스템을 제안한다. 시스템의 이상 감지 성능을 유지하고자 일정 주기마다 다수의 딥러닝 모델을 재학습하고 비교하여 최적의 모델로 업데이트 하는 방식을 고안하였다. 해당 시스템의 평가에는 실제 퍼블릭 클라우드 자원에서 발생한 메트릭 데이터가 활용됐으며, 그 결과 준수한 이상 감지 성능을 보인다는 것을 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.8
no.2
/
pp.106-116
/
1998
A position control algorithm of a flexible manipulator is studied. The proposed algorithm is based
on an ACFAC(Automatic Constructed Fuzzy Adaptive Controller) system based on the neural
network learning algorithms. The proposed system learns membership functions for input variables
using unsupervised competitive learning algorithm and output information using supervised outstar
learning algorithm. ACFAC does not need a dynamic modeling of the flexible manipulator. An
ACFAC is designed that the end point of the flexible manipulator tracks the desired trajectory. The
control input to the process is determined by error, velocity and variation of error. Simulation and
experiment results show a robustness of ACFAC compared with the PID control and neural network
algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.