• Title/Summary/Keyword: 비지도 학습.

Search Result 225, Processing Time 0.028 seconds

Enhancing Visualization in Self-Organizing Maps (SOM에서 개체의 시각화)

  • Um Ick-Hyun;Huh Myung-Hoe
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.83-98
    • /
    • 2005
  • Exploring distributional patterns of multivariate data is very essential in understanding the characteristics of given data set, as well as in building plausible models for the data. For that purpose, low-dimensional visualization methods have been developed by many researchers along various directions. As one of methods, Kohonen's SOM (Self-Organizing Map) is prominent. SOM compresses the volume of the data, yields abstraction from the data and offers visual display on low-dimensional grids. Although it is proven quite effective, it has one undesirable property: SOM's display is discrete. In this study, we propose two techniques for enhancing quality of SOM's display, so that SOM's display becomes continuous. The proposed methods are demonstrated in two numerical examples.

Principal Components Self-Organizing Map PC-SOM (주성분 자기조직화 지도 PC-SOM)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.321-333
    • /
    • 2003
  • Self-organizing map (SOM), a unsupervised learning neural network, has been developed by T. Kohonen since 1980's. Main application areas were pattern recognition and text retrieval. Because of that, it has not been spread to statisticians until late. Recently, SOM's are frequently drawn in data mining fields. Kohonen's SOM, however, needs improvements to become a statistician's standard tool. First, there should be a good guideline as for the size of map. Second, an enhanced visualization mode is wanted. In this study, principal components self-organizing map (PC-SOM), a modification of Kohonen's SOM, is proposed to meet such needs. PC-SOM performs one-dimensional SOM during the first stage to decompose input units into node weights and residuals. At the second stage, another one-dimensional SOM is applied to the residuals of the first stage. Finally, by putting together two stages, one obtains two-dimensional SOM. Such procedure can be easily expanded to construct three or more dimensional maps. The number of grid lines along the second axis is determined automatically, once that of the first axis is given by the data analyst. Furthermore, PC-SOM provides easily interpretable map axes. Such merits of PC-SOM are demonstrated with well-known Fisher's iris data and a simulated data set.

Impact of Self-Presentation Text of Airbnb Hosts on Listing Performance by Facility Type (Airbnb 숙소 유형에 따른 호스트의 자기소개 텍스트가 공유성과에 미치는 영향)

  • Sim, Ji Hwan;Kim, So Young;Chung, Yeojin
    • Knowledge Management Research
    • /
    • v.21 no.4
    • /
    • pp.157-173
    • /
    • 2020
  • In accommodation sharing economy, customers take a risk of uncertainty about product quality, which is an important factor affecting users' satisfaction. This risk can be lowered by the information disclosed by the facility provider. Self-presentation of the hosts can make a positive effect on listing performance by eliminating psychological distance through emotional interaction with users. This paper analyzed the self-presentation text provided by Airbnb hosts and found key aspects in the text. In order to extract the aspects from the text, host descriptions were separated into sentences and applied the Attention-Based Aspect Extraction method, an unsupervised neural attention model. Then, we investigated the relationship between aspects in the host description and the listing performance via linear regression models. In order to compare their impact between the three facility types(Entire home/apt, Private rooms, and Shared rooms), the interaction effects between the facility types and the aspect summaries were included in the model. We found that specific aspects had positive effects on the performance for each facility type, and provided implication on the marketing strategy to maximize the performance of the shared economy.

Unsupervised Abstractive Summarization Method that Suitable for Documents with Flows (흐름이 있는 문서에 적합한 비지도학습 추상 요약 방법)

  • Lee, Hoon-suk;An, Soon-hong;Kim, Seung-hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.501-512
    • /
    • 2021
  • Recently, a breakthrough has been made in the NLP area by Transformer techniques based on encoder-decoder. However, this only can be used in mainstream languages where millions of dataset are well-equipped, such as English and Chinese, and there is a limitation that it cannot be used in non-mainstream languages where dataset are not established. In addition, there is a deflection problem that focuses on the beginning of the document in mechanical summarization. Therefore, these methods are not suitable for documents with flows such as fairy tales and novels. In this paper, we propose a hybrid summarization method that does not require a dataset and improves the deflection problem using GAN with two adaptive discriminators. We evaluate our model on the CNN/Daily Mail dataset to verify an objective validity. Also, we proved that the model has valid performance in Korean, one of the non-mainstream languages.

Development of an unsupervised learning-based ESG evaluation process for Korean public institutions without label annotation

  • Do Hyeok Yoo;SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.155-164
    • /
    • 2024
  • This study proposes an unsupervised learning-based clustering model to estimate the ESG ratings of domestic public institutions. To achieve this, the optimal number of clusters was determined by comparing spectral clustering and k-means clustering. These results are guaranteed by calculating the Davies-Bouldin Index (DBI), a model performance index. The DBI values were 0.734 for spectral clustering and 1.715 for k-means clustering, indicating lower values showed better performance. Thus, the superiority of spectral clustering was confirmed. Furthermore, T-test and ANOVA were used to reveal statistically significant differences between ESG non-financial data, and correlation coefficients were used to confirm the relationships between ESG indicators. Based on these results, this study suggests the possibility of estimating the ESG performance ranking of each public institution without existing ESG ratings. This is achieved by calculating the optimal number of clusters, and then determining the sum of averages of the ESG data within each cluster. Therefore, the proposed model can be employed to evaluate the ESG ratings of various domestic public institutions, and it is expected to be useful in domestic sustainable management practice and performance management.

Unsupervised Learning and Inference Method for Semi-Autonomatic SMS Reply (단문 메시지 서비스의 준자동 응답을 위한 비지도학습 및 추론 방법)

  • Choe, Bong-Whan;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.416-419
    • /
    • 2008
  • 모바일 상의 단문메시지 서비스는 등장한 이례 꾸준히 사용량이 증가하는 추세이며, 현재 세계적으로 가장 많이 사용되는 모바일 서비스이다. 모바일 기기에서 단문 메시지 작성의 불편함을 개선하기 위한 기술로 하드웨어적인 입력 방법 개선과 소프트웨어적인 입력보조 기능이 꾸준히 개발되었다. 소프트웨어적인 방법은 범용성이 넓고 적용이 쉽다는 장점이 있지만 제한된 자원에서 구현상의 어려움이 있어 연구가 미비한 분야이다. 본 논문은 소프트웨어적으로 단문 메시지의 작성을 보조하는 방법을 제시한다. 일상 생활의 반복성에 초점을 맞추어 반복 작성될 메시지에 대해 기존의 메시지를 제시해 자동적으로 응답하도록 하는 방법을 제안한다. 자동적으로 응답 메시지를 선택하기 위한 비교사 학습과 추론 기술로 "메시지 네트워크"를 제안하고, 실험을 통해 고안한 방법의 가능성을 보였다. 실험 결과로부터 반복적인 메시지의 작성에 제시한 방법이 유용함을 알 수 있었다.

  • PDF

Automatic Generic Summarization Based on Non-negative Semantic Variable Matrix (비음수 의미 가변 행렬을 기반으로 한 자동 포괄적 문서 요약)

  • Park Sun;Lee Ju-Hong;Ahn Chan-Min;Park Tae-Su;Kim Deok-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.391-393
    • /
    • 2006
  • 인터넷의 급속한 확산과 대량 정보의 이동은 문서의 요약을 더욱 필요로 하고 있다. 본 논문은 비음수 행렬 인수분해로(NMF, non-negative matrix factorization) 얻어진 비음수 의미 가변 행렬(NSVM, non-negative semantic variable matrix)을 이용하여 자동으로 포괄적 문서요약 하는 새로운 방범을 제안하였다. 제안된 방법은 인간의 인식 과정과 유사한 비음수 제약을 사용한다. 이 결과 잠재의미색인에 비해 더욱 의미 있는 문장을 선택하여 문서를 요약할 수 있다. 또한, 비지도 학습에 의한 문서요약으로 사전 전문가에 의한 학습문장이 필요 없으며, 적은 계산비용을 통하여 쉽게 문장을 추출할 수 있는 장점을 갖는다.

  • PDF

Pattern Classification Method using SOFM and Multilayer Neural Network (SOFM과 다층신경회로망을 이용한 패턴 분류 방식)

  • 박진성;공휘식;이현관;김주웅;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.296-300
    • /
    • 2002
  • We proposed a method of a pattern classification using unsupervised teaming rules, SOFM, and supervised teaming rules, Multilayer neural network. Establish result that classify and get input pattern using SOFM by initial weighting vector of Multilayer neural network and target value. Got superior Performance as result that do simulation about face image to confirm usefulness of way that propose.

  • PDF

Anomaly Detection System for Cloud Resources Using Representation Learning-Based Deep Learning Models (표현 학습 기반의 딥러닝 모델을 활용한 클라우드 자원 이상 감지 시스템)

  • Min-Yeong Lee;Heon-Chang Yu
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.658-661
    • /
    • 2024
  • 퍼블릭 클라우드 시장이 성장하면서 퍼블릭 클라우드에서 호스팅하는 컴퓨팅 자원으로 구축된 거대하고 복잡한 IT 시스템이 점차 많아지고 있다. 이러한 시스템의 증가는 서비스 장애 발생 확률을 높이므로, 장애 관리 및 선제 감지를 위한 퍼블릭 클라우드 자원의 이상 감지 연구에 대한 수요 또한 증가하고 있다. 그러나 연구에 활용할 수 있는 벤치마크 데이터셋이 없다는 점과, 실제 자원에서 추출할 수 있는 데이터는 레이블링이 되어 있지 않은 불균형 데이터라는 점 때문에 관련 연구가 부족한 상황이다. 이러한 문제를 해결하고자 본 논문은 비지도 방식의 표현 학습 기반 딥러닝 모델을 활용한 이상 감지 시스템을 제안한다. 시스템의 이상 감지 성능을 유지하고자 일정 주기마다 다수의 딥러닝 모델을 재학습하고 비교하여 최적의 모델로 업데이트 하는 방식을 고안하였다. 해당 시스템의 평가에는 실제 퍼블릭 클라우드 자원에서 발생한 메트릭 데이터가 활용됐으며, 그 결과 준수한 이상 감지 성능을 보인다는 것을 확인하였다.

Design of an Automatic constructed Fuzzy Adaptive Controller(ACFAC) for the Flexible Manipulator (유연 로봇 매니퓰레이터의 자동 구축 퍼지 적응 제어기 설계)

  • 이기성;조현철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.106-116
    • /
    • 1998
  • A position control algorithm of a flexible manipulator is studied. The proposed algorithm is based on an ACFAC(Automatic Constructed Fuzzy Adaptive Controller) system based on the neural network learning algorithms. The proposed system learns membership functions for input variables using unsupervised competitive learning algorithm and output information using supervised outstar learning algorithm. ACFAC does not need a dynamic modeling of the flexible manipulator. An ACFAC is designed that the end point of the flexible manipulator tracks the desired trajectory. The control input to the process is determined by error, velocity and variation of error. Simulation and experiment results show a robustness of ACFAC compared with the PID control and neural network algorithms.

  • PDF