• Title/Summary/Keyword: 비중 선별

Search Result 95, Processing Time 0.012 seconds

Treatment of ASR from End-of-Life Vehicles by Air and Gravimetric Separation (廢自動車 ASR의 風力 및 比中選別에 의한 處理 硏究)

  • Lee, Hwa-Young;Oh, Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.3-9
    • /
    • 2005
  • A study on the air and gravity separation has been performed for the removal of chlorine containing materials from ASR of end-of-life vehicles. The gravity separation was also conducted on waste plastics collected from ASR. In this work, ASR were previously shredded to pass through 8 mm sieve prior to separation tests and the gravity separation of waste plastics was conducted for three different particle sizes. The two-stage air classification was conducted with the range of air flow rate of 9~20 M$^3$/hr at first stage and 25~34 M$^3$/hr at second stage, respectively. The fraction of overflow product was remarkably increased in the 2nd stage air classification because of high air flow rate while that of underflow product obtained from 1st stage air classification was found to be 62~66%. From the results of gravity separation on waste plastics, it was also found that the amount of the float product was much greater than sink product. It is believed that the gravity separation may be used very efficiently for the removal of calorine bearing materials from waste plastics.

Removal of PVC from Mixed Plastic Waste by Combination of Air Classification and Centrifugal Process (풍력(風力) 및 습식비중(濕式比重) 선별(選別)에 의한 혼합(混合)폐플라스틱 종말품(終末品)으로부터 PVC 제거(除去)에 관한 연구(硏究))

  • Choi, Woo-Zin;Yoo, Jae-Myung
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.71-76
    • /
    • 2007
  • The mixed plastic waste generated from households after hand-picking and/or mechanical sorting processes amounts to 1,750,000 ton in 2006, and most of these waste are finally end up with landfill and/or incineration due to the lacks of separation technologies and economical reasons. The mixed plastic wastes can not be used as raw materials for chemical and/or thermal recycling processes because of their high content of PVC(upto 4.0 wt.%). In the present research, gravity separation system has been developed to remove PVC from the mixed plastic waste and to recover the PO-type plastics. This system mainly consists of air classification, magnetic separation, one-step crushing, feeding system at fixed rate and wet-type gravity separation system. The gravity system based on centrifugal separation has been developed at capacity of 0.5 ton/h and it consists of mixing, precleaning, separation, dewatering, recovery system and wastewater treatment system, etc. The main objective of this process is to achieve high separation efficiency of polyolefins with less than 0.3 wt.% PVC content and less than 10% moisture content in the final products. In addition, a crushing unit of with 8 rotor system is also developed to improve the crushing efficiency of soft-type plastics. The system with a capacity of 1.0 ton/h is developed and operational results are presented.

Study on As Removal from Mine Tailing using MGS Gravity Separator (다중비중선별기를 이용한 광물찌꺼기로부터 비소제거 연구)

  • Kim, Jun-Hee;Kim, Min-Gyu;Kim, Woo-Ram;Han, Oh-Hyung
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.36-43
    • /
    • 2014
  • It comtained various kinds of heavy metal in beneficiatian tailing and in order to eliminate the heavy metals, various technologies have been researched, But there are a limits because many problems and restrictions are accompanied. Therefore, in this study, in order to solve this problem, It was performed gravity separation using melti-gravity seperator (MGS) to remove As contained in tailing, which can sort out even the fine particle. It was attempted a study to remove As, which is a kind of heavy metals, by MGS gravity separation and verified the impact by slope, wash water, pulp density, rotational speed and feed rate. In the results of performing gravity concentration under the condition with the MGS slope of $3^{\circ}$, wash water of 5 l/mm, pulp density of 30%, rotational speed of 208 rpm, and the feed rate of 265.24 g/mm, the As removal rate of 88.21% and yield of 92.25% were obtained.

Recovery of Valuable Materials from Gold Mine Tailings (금(金) 광산(鑛山) 광미(鑛尾)로부터 유가자원(有價資源) 회수(回收)에 관한 연구(硏究))

  • Oh, Won;Cho, Hee-Chan;Lee, Jin-Soo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.77-85
    • /
    • 2010
  • This study was carried out to develop a process flow sheet for recovering valuables (gold and high purity silica) from the gold mine tailings containing 1.7 g/ton of gold and 79.48 wt.% $SiO_2$. Float-sink tests using heavy liquids was conducted to explore the possibility of recovering gold by gravity separation. Hydrocyclone, froth flotation, and triboelectrostatic separatoin tests were conducted to recover high purity silica from the gold mine tailings. The results of float-sink tests showed that particles containing 5.58 g/ton of gold could be obtained at 2.72 specific gravity, but with very low yields around 3%. Meanwhile, all tests with hydrocyclone, froth flotation, and triboelectrostatic separation showed that high purity silica with $SiO_2$ content over 90% could be obtained. The purity could be improved further up to about 94% by employing several recleaning steps in the froth flotation and triboelectrostatic process.

Mineralogy of Sea Sand Near Ongjingun through the Separation Processes (옹진군 해사의 선별공정에 따른 광물학적 특성)

  • Chae, Soo-Chun;Shin, Hee-Young;Bae, In-Kook;Kwon, Sung-Won;Lee, Chun-Oh;Kim, Jung-Yoon;Jang, Young-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2011
  • Mineralogical study was carried out for heavy minerals in the sea sand near Ongjingun bay, Kyonggi-do separated using the gravity and magnetic separators. Ilmenite, zircon and minor monazite and garnet were valuable minerals with gangue minerals of quartz, K-feldspar, plagioclase, muscovite, hornblende, epidote and chlorite. Quantitative analysis with SIROQUANT program showed that the contents of ilmenite separated with the gravity separation (the shaking table separation), the 1st step magnetic separation (rare earth magnetic separation) and the 2nd step magnetic separation (the Eddy current magnetic separation) were increased into 0.8, 18.3, and 48.7%, respectively. The content of ilmenite, monazite and zircon were recalculated based on the chemical composition of the representative and heavy fraction products of raw sand, the 1 step and 2 step gravity separations, and the 1 step and 2 step magnetic separations. The content increased to 0.23, 0.55, 5.22, 16.17, and 44.99% in ilmenite, 0.11, 0.02, 0.16, 0.51, and 1.19% in monazite. Although the zircon content did not differ over the processes (0.13, 0.12, 0.11, 0.15, and 0.10%), the improved recovery of zircon is expected by applying sieving process because of its high content (27%) in the fine grain size fraction (< 140#) of the 2 step gravity separation.

Mongolia Erden-soum tungsten development (몽골 에르덴솜 텅스텐광 개발을 위한 선별시스템 개발)

  • Kim, Su-Gang;Jeon, Ho-Seok;Baek, Sang-Ho;Kim, Byoung-Gon
    • Mineral and Industry
    • /
    • v.28
    • /
    • pp.1-13
    • /
    • 2015
  • In this study, it was carried out separation process research and development to be able to produce high-grade tungsten concentrate form tungsten taken form Mongolia. In order to reduce treatment cost and increase separation efficiency the jig separation at first was applied for recovering the concentrate. Which reground would make the degree of liberation increase. Which was treated by shaking table to reject the gangue minerals from the first concentrate. Because the heavier product contains not only ferberite but also cassiterite, the product was treated by further dry magnetic separation to obtain the ferberite concentrate. Finally, the high-grade ferberite concentrate of 67.63% $WO_3$ could be obtained with recovery of 86.07% through the separation process developed in this study.

  • PDF