In the presidential political system, the word of the president has great influence on the formation of national policy and the decision-making process. Policy priorities are determined according to the president's ideology and core values, and various policies are established and executed according to the priorities. Therefore, this paper analyzes the contents of the president's speech. Since the president's speech is a semantic datum, in order to analyze unstructured text, big data analysis is conducted through the methods of machine learning and deep learning. In this study, the president's speech at the "National Sea Day" commemoration was obtained 1996 onwards and analyzed using topic modeling. As a result of the analysis, all the presidents' speeches were delivered with a view of the ocean that was consistent with the direction of their administration. It was confirmed that the ocean-industry-resource topics, which are the intrinsic values of the ocean, were not damaged and consistently emphasized by all presidents.
Many studies have been carried out for the development of big data utilization and analysis technology recently. There is a tendency that government agencies and companies to introduce a Hadoop of a processing platform for analyzing big data is increasing gradually. Increased interest with respect to the processing and analysis of these big data collection technology of data has become a major issue in parallel to it. However, study of the collection technology as compared to the study of data analysis techniques, it is insignificant situation. Therefore, in this paper, to build on the Hadoop cluster is a big data analysis platform, through the Apache sqoop, stylized from relational databases, to collect the data. In addition, to provide a sensor through the Apache flume, a system to collect on the basis of the data file of the Web application, the non-structured data such as log files to stream. The collection of data through these convergence would be able to utilize as a basic material of big data analysis.
Generation and analysis methods have been proposed in recent years, such as using a natural language and formal language processing, artificial intelligence algorithms based knowledge model is effective meaning. its semantic based knowledge model has been used effective decision making tree and problem solving about specific context. and it was based on static generation and regression analysis, trend analysis with behavioral model, simulation support for macroeconomic forecasting mode on especially in a variety of complex systems and social network analysis. In this study, in this sense, integrating knowledge-based models, This paper propose a text mining derived from the inter-Topic model Integrated formal methods and Algorithms. First, a method for converting automatically knowledge map is derived from text mining keyword map and integrate it into the semantic knowledge model for this purpose. This paper propose an algorithm to derive a method of projecting a significant topic map from the map and the keyword semantically equivalent model. Integrated semantic-based knowledge model is available.
Proceedings of the Korean Institute Of Construction Engineering and Management
/
2008.11a
/
pp.877-882
/
2008
The column gap of underground parking lots of office considering a business background and effective parking divisions is planned. A parking plan by column gap of fixed forms in atypical underground parking lots makes much extra storage rooms. Most of the edge of the parking lots are used for fan room. Part of the edge are located at parking ramps. Also warehouses are located in extra storage rooms. In this study compare study economical efficiency between life cycle costs and leases earnings. Consequently, It is proved that the warehouse rental is efficient because of lease earning guaranted years.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.123-125
/
2016
Big data analysis refers the ability to store, manage and analyze collected data from an existing database management tool. In addition, extract value from large amounts of structured or unstructured data set and means the technology to analyze the results. Meta-analysis refers to a statistical literature synthesis method from the quantitative results of many known empirical studies. We conducted a meta-analysis and review of between success factors based the information systems success model researches. This study focused a total of 14 research papers that established causal relationships between success factors based the information systems success model published in Korea academic journals during 2000 and 2016. Based on these findings, several theoretical and practical implications were suggested and discussed with the difference from previous researches.
This study was attempted to identify the domestic research related to depression and stress. The subjects of the analysis were 1,875 college degree theses thrown in the National Assembly Library searched by the depression and stress keyword as of November 30, 2016. The analysis method visualizes atypical data with Word Cloud, which is one of the text mining techniques. We also used the R'LDA package and LDA to classify treatment and subjects. As a result of the analysis, 233(12.4%) of the total papers with therapeutic keywords were found. Application of treatment methods was art therapy, music therapy, horticultural therapy, cognitive behavior therapy, clinical art therapy, cognitive therapy, psychological therapy, depression treatment, group therapy, laughter treatment sequence. The study subjects were adolescents, elderly, patient, mother, child, female, parents, and college students in order. The results of LDA topic analysis for adolescents were classified into four topics: self-support, treatment program, relationship effect, and variable study.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.1
/
pp.117-126
/
2019
The data generated in the IoT environment is very diverse. Especially, the development of the fourth industrial revolution has made it possible to increase the number of fixed and unstructured data generated in manufacturing facilities such as Smart Factory. With Big Data related solutions, it is possible to collect, store, process, analyze and visualize various large volumes of data quickly and accurately. Therefore, in this paper, we will directly generate data using Raspberry Pi used in IoT environment, and analyze using various Big Data solutions. Collected by using an Sqoop solution collected and stored in the database to the HDFS, and the process is to process the data by using the solutions available Hive parallel processing is associated with Hadoop. Finally, the analysis and visualization of the processed data via the R programming will be used universally to end verification.
Seoung-Bin Ye;Jeong-Seon Park;Hyi-Thaek Ceong;Soon-Hee Han
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.4
/
pp.763-770
/
2024
Currently, land-based fish farms utilizing seawater have introduced and are utilizing various equipment such as real-time water quality monitoring systems, facility automation systems, and automated dissolved oxygen supply devices. Furthermore, data collected from various equipment in these fish farms produce structured and unstructured big data related to water quality environment, facility operations, and workplace visual information. The big data generated in the operational environment of fish farms aims to improve operational and production efficiency through the development and application of various methods. This study aims to develop a system for effectively analyzing and visualizing big data produced from land-based fish farms. It proposes a data visualization process suitable for use in a fish farm big data analysis system, develops big data visualization tools, and compares the results. Additionally, it presents intuitive visualization models for exploring and comparing big data with time-series characteristics.
The demand prediction is a critical issue for the film industry. As the social media, such as Twitter and Facebook, gains momentum of late, considerable efforts are being dedicated to prediction and analysis of hit movies based on unstructured text data. For prediction of trends found in commercially successful films, the correlations between the amount of data and hit movies may be analyzed by estimating the data variation by period while opinion mining that assigns sentiment polarity score to data may be employed. However, it is not possible to understand why the audience chooses a certain movie or which attribute of a movie is preferred by using such a quantitative approach. This has limited the efforts to identify factors driving a movie's commercial success. In this regard, this study aims to investigate a movie's attributes that reflect the interests of the audience. This would be done by extracting topic keywords that represent the contents of Twits through frequency measurement based on the collected Twitter data while analyzing responses displayed by the audience. The objective is to propose factors driving a movie's commercial success.
Traditional Anti-Money Laundering (AML) software applications monitor bank customer transactions on a daily basis using customer historical information and account profile data to provide a "whole picture" to bank management. With the advent of Big Data, these applications could be benefited from size, variety, and speed of unstructured data, which have not been used in AML applications before. This study analyses the weaknesses of a bank's current AML systems and proposes an AML systems taking advantage of Big Data. For example, early warning of AML risk can be improved by exposing identities and uncovering hidden relationships through predictive and entity analytics on real-time and outside data such as SNS data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.