• Title/Summary/Keyword: 비정형분석

Search Result 484, Processing Time 0.03 seconds

Technical Trends of Mobile Robot Intelligence in Dynamic and Unstructured Environments (동적/비정형 환경의 로봇 이동지능 기술 동향)

  • H.K., Cho;W.P., Yu;E.G., Lim;S.H., Song
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.6
    • /
    • pp.23-31
    • /
    • 2022
  • Mobile robot intelligence refers to planning the path of robots to move indoors and outdoors and establishing a physical action plan that can be driven safely and smoothly according to the surrounding environments' structures. This report introduces technical issues in mobile robot intelligence. Furthermore, we describe the latest mobile intelligence technology of four-legged walking, logistics, and agricultural robots. Finally, we discuss mobile robot intelligence research prospects and its potential for solving real-world problems.

Claim-Evidence Pair Extraction Model using Hierarchical Label Embedding (계층적 레이블 임베딩을 이용한 주장-증거 쌍 추출 모델)

  • Yujin Sim;Damrin Kim;Tae-il Kim;Sung-won Choi;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.474-478
    • /
    • 2023
  • 논증 마이닝이란 비정형의 텍스트 데이터에서 논증 구조와 그 요소들을 식별, 분석, 추출하는 자연어 처리의 한 분야다. 논증 마이닝의 하위 작업인 주장-증거 쌍 추출은 주어진 문서에서 자동으로 주장과 증거 쌍을 추출하는 작업이다. 본 논문에서는 효과적인 주장-증거 쌍 추출을 위해, 문서 단위의 문맥 정보를 이용하고 주장과 증거 간의 종속성을 반영하기 위한 계층적 LAN 방법을 제안한다. 실험을 통해 서로의 정보를 활용하는 종속적인 구조가 독립적인 구조보다 우수함을 입증하였으며, 최종 제안 모델은 Macro F1을 기준으로 13.5%의 성능 향상을 보였다.

  • PDF

Exploring 'Tradition' Terminology Trends based on Keyword Analysis (1920~2017) (키워드 분석 기반 '전통' 용어의 트렌드 분석 (1920~2017))

  • Kim, Min-Jeong;Kim, Chul Joo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.421-431
    • /
    • 2018
  • The purpose of this study is to analyze the trends of 'traditional' terminology in Korea. We focus on an empirical investigation of how media reports are conveying 'tradition' terminology in our society by applying text mining and social network analysis techniques. The analysis covered 2,481,143 news articles related to 'tradition' terminology that appeared in the media since the 1920's. In this research, frequency analysis, association analysis and social network analysis were used on articles related to 'tradition' terminology from 1920 to 2017 by decade. By applying these data science techniques, we can grasp the meaning of social culture phenomenon related 'tradition' with objective and value-neutral position and understand the social symbolism which contains the tradition of the times.

A Meta-Analysis of Influencing Soybean Food Interventions on the Metabolic Syndrome Risk Factors Utilizing Big Data (빅 데이터 분석을 활용한 콩 식품 중재가 대사증후군 위험요인에 미치는 영향 메타분석)

  • Yu, Ok-Kyeong;Cha, Youn-Soo;Jin, Chan-Yong;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.134-137
    • /
    • 2016
  • Big data analysis refers the ability to store, manage and analyze collected data from an existing database management tool. In addition, extract value from large amounts of structured or unstructured data set and means the technology to analyze the results. Meta-analysis is a statistical integration method that delivers an opportunity to overview the entire result of integrating and analyzing many quantitative research results. Meta-analysis is sometimes expressed as an analysis of another analysis. Commonly, factors of metabolic syndrome can be defined as abdominal obesity, high triglycerides, low high density lipoprotein cholesterol, elevated blood pressure, and elevated fasting glucose. This study will find meaningful mediator variables for criterion variables that affect before and after the metabolic syndrome studies, on the basis of the results of a meta-analysis. We reviewed a total of 5 studies related to metabolic syndrome published in Korea between 2000 and 2016, where a cause and effect relationship is established between variables that are specified in the conceptual model of this study.

  • PDF

Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary (주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안)

  • Yu, Eunji;Kim, Yoosin;Kim, Namgyu;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • Recently, the amount of unstructured data being generated through a variety of social media has been increasing rapidly, resulting in the increasing need to collect, store, search for, analyze, and visualize this data. This kind of data cannot be handled appropriately by using the traditional methodologies usually used for analyzing structured data because of its vast volume and unstructured nature. In this situation, many attempts are being made to analyze unstructured data such as text files and log files through various commercial or noncommercial analytical tools. Among the various contemporary issues dealt with in the literature of unstructured text data analysis, the concepts and techniques of opinion mining have been attracting much attention from pioneer researchers and business practitioners. Opinion mining or sentiment analysis refers to a series of processes that analyze participants' opinions, sentiments, evaluations, attitudes, and emotions about selected products, services, organizations, social issues, and so on. In other words, many attempts based on various opinion mining techniques are being made to resolve complicated issues that could not have otherwise been solved by existing traditional approaches. One of the most representative attempts using the opinion mining technique may be the recent research that proposed an intelligent model for predicting the direction of the stock index. This model works mainly on the basis of opinions extracted from an overwhelming number of economic news repots. News content published on various media is obviously a traditional example of unstructured text data. Every day, a large volume of new content is created, digitalized, and subsequently distributed to us via online or offline channels. Many studies have revealed that we make better decisions on political, economic, and social issues by analyzing news and other related information. In this sense, we expect to predict the fluctuation of stock markets partly by analyzing the relationship between economic news reports and the pattern of stock prices. So far, in the literature on opinion mining, most studies including ours have utilized a sentiment dictionary to elicit sentiment polarity or sentiment value from a large number of documents. A sentiment dictionary consists of pairs of selected words and their sentiment values. Sentiment classifiers refer to the dictionary to formulate the sentiment polarity of words, sentences in a document, and the whole document. However, most traditional approaches have common limitations in that they do not consider the flexibility of sentiment polarity, that is, the sentiment polarity or sentiment value of a word is fixed and cannot be changed in a traditional sentiment dictionary. In the real world, however, the sentiment polarity of a word can vary depending on the time, situation, and purpose of the analysis. It can also be contradictory in nature. The flexibility of sentiment polarity motivated us to conduct this study. In this paper, we have stated that sentiment polarity should be assigned, not merely on the basis of the inherent meaning of a word but on the basis of its ad hoc meaning within a particular context. To implement our idea, we presented an intelligent investment decision-support model based on opinion mining that performs the scrapping and parsing of massive volumes of economic news on the web, tags sentiment words, classifies sentiment polarity of the news, and finally predicts the direction of the next day's stock index. In addition, we applied a domain-specific sentiment dictionary instead of a general purpose one to classify each piece of news as either positive or negative. For the purpose of performance evaluation, we performed intensive experiments and investigated the prediction accuracy of our model. For the experiments to predict the direction of the stock index, we gathered and analyzed 1,072 articles about stock markets published by "M" and "E" media between July 2011 and September 2011.

Methodology of Local Government Policy Issues Through Big Data Analysis (빅데이터 분석을 통한 지방자치단체 정책이슈 도출 방법론)

  • Kim, Yong-Jin;Kim, Do-Young
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.229-235
    • /
    • 2018
  • The purpose of this study is to propose a method to utilize Big Data Analysis to find policy issues of local governments in the reality that utilization of big data becomes increasingly important in efficient and effective policy making process. For this purpose, this study analyzed the 180,000 articles of Suwon city for the past three years and identified policy issues and evaluated policy priorities through IPA analysis. The results of this study showed that the analysis of semi-formal big data through newspaper articles is effective in deriving the differentiated policy issues of different local autonomous bodies from the main issues in the nation, In this way, the methodology of finding policy issues through the analysis of big data suggested in this study means that local governments can effectively identify policy issues and effectively identify the people. In addition, the methodology proposed in this study is expected to be applicable to the policy issues through the analysis of various semi - formal and informal big data such as online civil complaint data of the local government, resident SNS.

A Meta-Analysis of Influencing Collagen Intake on Human Body (콜라겐 섭취가 인체에 미치는 영향 메타분석)

  • Yu, Ok-Kyeong;Jin, Chan-Yong;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.120-123
    • /
    • 2016
  • Big data analysis refers the ability to store, manage and analyze collected data from an existing database management tool. In addition, extract value from structured and unstructured on the data set in big volume means the technology to analyze the results. The findings published from many researchers at the same theme is a meta-analysis a method described with a summary. Meta-analysis is a statistical integration method that delivers an opportunity to overview the entire result of integrating and analyzing many quantitative research results. We reviewed a total of 21 studies to published on topics as collagen intake in Korea between 2000 and 2016, where a cause and effect relationship is established between variables that are specified in the conceptual model of this study. Thus, we present the theoretical and practical implications of these results.

  • PDF

Application Development for Text Mining: KoALA (텍스트 마이닝 통합 애플리케이션 개발: KoALA)

  • Byeong-Jin Jeon;Yoon-Jin Choi;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.21 no.2
    • /
    • pp.117-137
    • /
    • 2019
  • In the Big Data era, data science has become popular with the production of numerous data in various domains, and the power of data has become a competitive power. There is a growing interest in unstructured data, which accounts for more than 80% of the world's data. Along with the everyday use of social media, most of the unstructured data is in the form of text data and plays an important role in various areas such as marketing, finance, and distribution. However, text mining using social media is difficult to access and difficult to use compared to data mining using numerical data. Thus, this study aims to develop Korean Natural Language Application (KoALA) as an integrated application for easy and handy social media text mining without relying on programming language or high-level hardware or solution. KoALA is a specialized application for social media text mining. It is an integrated application that can analyze both Korean and English. KoALA handles the entire process from data collection to preprocessing, analysis and visualization. This paper describes the process of designing, implementing, and applying KoALA applications using the design science methodology. Lastly, we will discuss practical use of KoALA through a block-chain business case. Through this paper, we hope to popularize social media text mining and utilize it for practical and academic use in various domains.

A Comparative Study on the Promotion Policy of Electronic Trade in the U.S.A. and Singapore (미국과 싱가포르의 전자무역 지원정책에 관한 비교 연구 - 비정형 전자무역 분야의 사례분석을 중심으로 -)

  • Lee, Seong-Bong;Shim, Sang-Ryul
    • International Commerce and Information Review
    • /
    • v.3 no.1
    • /
    • pp.225-240
    • /
    • 2001
  • 미국과 싱가포르는 모두 세계에서 가장 우수한 기업 경영환경을 제공하는 국가이다. 그러나 미국이 자유방임형이라고 한다면 싱가포르는 철저하게 계획형이라는 점에서 다르다. 따라서 본 연구에서는 미국과 싱가포르의 전자무역 지원정책의 사례를 분석하고, 상호비교를 통해 우리 나라 전자무역 지원정책에 대한 시사점을 파악하였다. 본 연구의 가장 큰 시사점은 전자무역의 활성화가 기본적으로 민간의 적극적인 참여로 이루어져야 한다는 것이다. 정부의 역할은 주도적인 입장이 아닌 철저한 지원자의 입장에서 수행되어야 한다. 정부가 거래알선 및 e마켓플레이스 등 전자무역의 핵심적인 활동에 직접적으로 관여하기보다는 관련된 민간기업을 육성하고, 기업들의 전자무역 수행능력을 제고시키며, 기업의 전자무역 활동이 원활하게 이루어질 수 있도록 전자무역 인프라의 확충에 정책의 초점을 맞추어야 한다는 점이다. 향후 전자무역 촉진을 위한 주요 정책의 방향으로 전자무역에 대한 기본적인 인식을 제고 할 수 있는 홍보활동 강화, 전자상거래 지원기관과 전통적인 무역지원기관들의 연계 및 산학연계 활동의 촉진을 통해서 중소 기업에 대한 실질적인 전자무역의 지원, 전자무역 관련 전문인력의 체계적인 양성, 무역 관련 공공정보시스템의 개선 등이 제시될 수 있다.

  • PDF

Study of Trust Bigdata Platform (신뢰성 빅데이터 플렛폼의 연구)

  • Kim, Jeong-Joon;Kwak, Kwang-Jin;Lee, Don-Hee;Lee, Yong-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.225-230
    • /
    • 2016
  • Recently, Web has arisen large amount of data that to the development of the network and the Internet. In order to process it appeared that Big Data technology. Big Data technologies have been studied aiming a multifaceted and accurate analysis using existing regular data and a variety of data social data. But social data does not have the expertise and objectivity. And such manipulation and concealment and distortion of information have been raised troubling. Thus, this paper proposes for trust big data platform and will be described in detail. The big data platform proposed in this paper consists of data refiner, Data Analyzer, co-truster, visualizer, searcher, etc.