• 제목/요약/키워드: 비정상 행위 탐지

검색결과 152건 처리시간 0.034초

Design and Evaluation of an Anomaly Detection Method based on Cross-Feature Analysis using Rough Sets for MANETs (모바일 애드 혹 망을 위한 러프 집합을 사용한 교차 특징 분석 기반 비정상 행위 탐지 방법의 설계 및 평가)

  • Bae, Ihn-Han;Lee, Hwa-Ju
    • Journal of Internet Computing and Services
    • /
    • 제9권6호
    • /
    • pp.27-35
    • /
    • 2008
  • With the proliferation of wireless devices, mobile ad-hoc networking (MANETS) has become a very exciting and important technology. However, MANET is more vulnerable than wired networking. Existing security mechanisms designed for wired networks have to be redesigned in this new environment. In this paper, we discuss the problem of anomaly detection in MANET. The focus of our research is on techniques for automatically constructing anomaly detection models that are capable of detecting new or unseen attacks. We propose a new anomaly detection method for MANETs. The proposed method performs cross-feature analysis on the basis of Rough sets to capture the inter-feature correlation patterns in normal traffic. The performance of the proposed method is evaluated through a simulation. The results show that the performance of the proposed method is superior to the performance of Huang method that uses cross-feature based on the probability of feature attribute value. Accordingly, we know that the proposed method effectively detects anomalies.

  • PDF

The Automatic Generation of Intrusion Detection Automata using System Call Sequences (시스템 콜 시퀀스를 이용한 침입탐지 오토마타의 자동생성)

  • 문병은;위규범
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.664-666
    • /
    • 2002
  • 침입 탐지 시스템 연구에서 정상 행위와 비정상 행위를 구별하기 위한 방법으로 시스템 콜 시퀀스를 이용하는 방법들이 많이 소개되었다. 그 중에서도 정상적인 시스템 콜 시퀀스를 프로파일링 하는데 있어서 오토마타를 이용하는 방법들이 제안되었다. 그러나 정상적인 시스템 콜 시퀀스의 오토마타를 생성하는데 있어서 수동적으로 생성하는 방법이 대부분이었고, 자동적으로 생성하는 방법도 제안되었다. 본 논문에서는 시스템 콜 시퀀스에 대한 오토마타를 자동으로 생성하는 방법을 제안한다.

  • PDF

Abnormal Traffic Behavior Detection by User-Define Trajectory (사용자 지정 경로를 이용한 비정상 교통 행위 탐지)

  • Yoo, Haan-Ju;Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제48권5호
    • /
    • pp.25-30
    • /
    • 2011
  • This paper present a method for abnormal traffic behavior, or trajectory, detection in static traffic surveillance camera with user-defined trajectories. The method computes the abnormality of moving object with a trajectory of the object and user-defined trajectories. Because of using user-define based information, the presented method have more accurate and faster performance than models need a learning about normal behaviors. The method also have adaptation process of assigned rule, so it can handle scene variation for more robust performance. The experimental results show that our method can detect abnormal traffic behaviors in various situation.

A Portscan Attack Detection Mechanism based on Fuzzy Logic for Abnormal Traffic Control Framework (비정상 트래픽 제어 프레임워크를 위한 퍼지 로직 기반의 포트스캔 공격 탐지 기법)

  • Kim, Jae-Gwang;Lee, Ji-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.357-361
    • /
    • 2007
  • 비정상 트래픽 제어 프레임워크에 적용된 비정상 트래픽 제어 기술은 침입, 분산서비스거부 공격, 포트스캔 공격과 같은 비정상 행위의 트래픽을 제어하는 공격 대응 방법이다. 이 대응 방법은 비정상 행위에 대한 true-false 방식의 공격 대응 방법이 가지는 높은 오탐율(false-positive rate)을 낮출 수 있다는 장점이 있지만, 공격 지속시간에만 의존하여 비정상 트래픽을 판단하기 때문에, 공격에 대한 신속한 대응을 하지 못한다는 한계를 가지고 있다. 이에 본 논문에서는 비정상 트래픽 제어 프레임워크에 퍼지 로직을 적용하여 신속한 공격 대응이 가능한 포트스캔 공격 탐지 기법을 제안한다.

  • PDF

Statistical Analysis Methods For Network Based Intrusion Detection (네트워크 기반의 침입을 탐지하기 위한 통계적 분석 기법)

  • Park, Charn-Y;Hong, Sun-Ho;Wee, Kyu-Bum
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (하)
    • /
    • pp.1001-1004
    • /
    • 2001
  • 현재 네트워크 기반의 침입 탐지는 대부분 오용 탐지 기법을 사용한다. 하지만 이는 알려지지 않은 침입을 탐지하는 능력이 떨어지는 기법으로서 이를 보완할 수 있는 비정상행위 탐지 기법을 찾는 것이 필요하다. 따라서 수집된 감사 자료로부터 정상행위를 프로파일링하고 침입임을 판정하는데 통계적인 기법을 사용하였다. 수집된 로그로부터 통계적인 방법으로 정상행위를 프로파일링하기 위해 우선 패킷으로부터 수집되는 감사 자료의 통계적인 특성을 대변하는 분포와 파라미터를 추정하고 카이스퀘어 검정법을 사용하여, 감사 자료가 가설하는 이론적인 분포의 특성을 가지고 있다고 판정되면 이를 정상행위의 기준으로 삼는다. 이후에 수집되는 감사자료를 감시하기 위해 추정된 분포와 파라미터를 따르고 있는지의 여부를 Kolmogorov-Smirnov 적합도 검정을 이용하여 판별하고, 이를 벗어나는 경우 침입으로 판정할 수 있도록 한다.

  • PDF

A Study on Evaluation Model and Network Based IDS using IBL (IBL을 사용한 네트워크 기반 침입탐지 시스템과 평가 모델의 연구)

  • Kim, Do-Jin;Won, Il-Yong;Song, Doo-Heon;Lee, Chang-Hun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (중)
    • /
    • pp.949-952
    • /
    • 2002
  • 비정상 행위를 탐지하는 네트워크 기반 침입탐지 시스템은 다른 네트워크 환경에서도 같은 학습정확도와 탐지 성능을 보여야 한다. 그러나 학습을 통한 패턴생성 알고리즘의 특성에 따라 정확도의 불일치가 나타날 수 있으며, 이에 따른 탐지 성능 또한 네트워크 환경에 따라 다르게 보고될 수 있는 가능성을 가진다. 본 논문은 침입탐지를 위한 학습 알고리즘으로 Instance 기반의 알고리즘인 IBL(Instance Based Learning)을 선택하여 학습시간의 단축과 패턴생성에 따른 분류근거의 명확성을 고려하였으며, 학습 환경 즉, 네트워크 환경의 차이에서 나타날 수 있는 정확도의 저하를 고려하여 COBWEB 과 C4.5 로 구성된 평가 요소를 침입탐지 모델에 추가함으로써 네트워크 보안관리자에게 좀더 유연한 비정상 행위 수준 탐지결과를 보고할 수 있게 하였다.

  • PDF

Performance Improvement of Infusion Detection System based on Hidden Markov Model through Privilege Flows Modeling (권한이동 모델링을 통한 은닉 마르코프 모델 기반 침입탐지 시스템의 성능 향상)

  • 박혁장;조성배
    • Journal of KIISE:Information Networking
    • /
    • 제29권6호
    • /
    • pp.674-684
    • /
    • 2002
  • Anomaly detection techniques have teen devised to address the limitations of misuse detection approach for intrusion detection. An HMM is a useful tool to model sequence information whose generation mechanism is not observable and is an optimal modeling technique to minimize false-positive error and to maximize detection rate, However, HMM has the short-coming of login training time. This paper proposes an effective HMM-based IDS that improves the modeling time and performance by only considering the events of privilege flows based on the domain knowledge of attacks. Experimental results show that training with the proposed method is significantly faster than the conventional method trained with all data, as well as no loss of recognition performance.

An Aggregate Detection Method for Improved Sensitivity using Correlation of Heterogeneous Intrusion Detection Sensors (이종의 침입탐지센서 관련성을 이용한 통합탐지의 민감도 향상 방법)

  • 김용민;김민수;김홍근;노봉남
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제12권4호
    • /
    • pp.29-39
    • /
    • 2002
  • In general, the intrusion detection method of anomalous behaviors has high false alarm rate which contains false-positive and false-negative. To increase the sensitivity of intrusion detection, we propose a method of aggregate detection to reduce false alarm rate by using correlation between misuse activity detection sensors and anomalous ones. For each normal behavior and anomalous one, we produce the reflection rate between the result from one sensor and another in off-line. Then, we apply this rate to the result of real-time detection to reduce false alarm rate.

A Big Data Application for Anomaly Detection in VANETs (VANETs에서 비정상 행위 탐지를 위한 빅 데이터 응용)

  • Kim, Sik;Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제14권6호
    • /
    • pp.175-181
    • /
    • 2014
  • With rapid growth of the wireless mobile computing network technologies, various mobile ad hoc network applications converged with other related technologies are rapidly disseminated nowadays. Vehicular Ad Hoc Networks are self-organizing mobile ad hoc networks that typically have moving vehicle nodes with high speeds and maintaining its topology very short with unstable communication links. Therefore, VANETs are very vulnerable for the malicious noise of sensors and anomalies of the nodes in the network system. In this paper, we propose an anomaly detection method by using big data techniques that efficiently identify malicious behaviors or noises of sensors and anomalies of vehicle node activities in these VANETs, and the performance of the proposed scheme is evaluated by a simulation study in terms of anomaly detection rate and false alarm rate for the threshold ${\epsilon}$.

HTTP Traffic Based Anomaly Detection System (HTTP 트래픽 기반의 비정상행위 탐지 시스템)

  • Kim Hyo-Nam;Jang Sung-Min;Won Yu-Hun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (C)
    • /
    • pp.313-315
    • /
    • 2006
  • 최근 인터넷 공격은 웹 서비스 환경에서 다양한 공격 유형들이 인터넷상에서 나타나고 있는 실정이다. 특히 인터넷 웜이나 기타 알려지지 않은 공격이 대중을 이루고 있어 기존의 정보 보호 기술로는 한계에 다다르고 있으며 이미 알려진 공격을 탐지하는 오용탐지 기술로는 적절하게 대응하기 어려워진 상태이다. 또한, 웹 서비스 이용이 확대되고 사용자 요구에 맞게 변화하면서 인터넷상의 노출된 웹 서비스는 공격자들에게 있어 주공격 대상이 되고 있다. 본 논문에서는 웹 기반의 트래픽 유형을 분석하고 각 유형에 따른 이상 징후를 파악할 수 있는 비정상 탐지 모델을 정의하여 정상 트래픽 모델과 비교함으로써 현재 트래픽의 이상 정도를 평가하고 탐지 및 규칙생성, 추가하는 HTTP 트래픽 기반의 비정상행위 탐지 시스템을 설계하고 구현하였다.

  • PDF