• Title/Summary/Keyword: 비정상 열응력

Search Result 21, Processing Time 0.022 seconds

Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate (경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.91-100
    • /
    • 2004
  • A Green's function approach is adopted for analyzing the thermoelastic deformations and stresses of a plate made of functionally graded materials(FGMs). The solution to the 3-dimensional unsteady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green's function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical analysis for a simply supported plate is carried out and effects of material properties on unsteady thermoclastic behaviors are discussed.

A Study on Unsteady Temperature Distribution Analysis of Moss Type LNG Carrier by Insulation System (MOSS형 LNG선의 방열구조에 의한 비정상 온도분포해석에 관한 연구)

  • Kim, Jin-Goo;Kim, Yong-Mo;Kim, Chun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.159-168
    • /
    • 1997
  • 본 연구는 Moss형 LNG선박의 방열구조에서 LNG탱크에 침입하는 열량과 선체의 온도분포를 예측하고, 운항 중 LNG탱크를 Cooling down(예냉)하는 경우 발생하는 비정상상태에서 LNG탱크에 발생하는 국부적인 열응력을 검토할 수 있는 비정상 온도분포해석과 LNG증발량을 검토하였다. 특히 운항 중인 선박을 대상으로 일반적인 수치계산시에 필요한 각종 입력절차를 간소화 하고 경계조건 선정시에 비 전문가도 쉽게 이용할 수 있는 전산프로그램을 개발하였다. Moss형 LNG탱크의 예냉작업에 필요한 최적의 냉매량과 예냉조건을 비정상상태에서 해석한 것은 설계자 및 선박 운항자에게 유용하게 이용될 것이다.

  • PDF

A Study on Thermal Shock of Ceramic Monolithic Substrate (세라믹 모노리스 담체의 열충격 특성에 관한 연구)

  • Baek, Seok-Heum;Park, Jae-Sung;Kim, Min-Gun;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.129-138
    • /
    • 2010
  • Technical ceramics, due to their unique physical properties, are excellent candidate materials for engineering applications involving extreme thermal and chemical environments. When ceramics are rapidly cooled, they receive thermal shock. The thermal shock parameter is defined as the critical temperature difference. The critical temperature difference for ceramic parts is influenced by its size, the convective heat transfer coefficient, etc. The thermal shock for a component is analyzed by using the transient thermal stress. If the transient thermal stress exceeds the modulus of rupture (MOR), cracking by thermal shock is initiated. The critical temperature difference for water is less than the critical temperature difference for air. The three-way catalyst substrate used in this study has an adequate performance against thermal shock because its radial and axial temperature differences existed below the critical temperature differences.

An analytical study on unsteady thermal stresses of functionally graded materials (경사기능재료의 비정상 열응력에 관한 해석적 연구)

  • Choi, Deok-Kee;Kim, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1441-1451
    • /
    • 1997
  • This paper addresses method which can be used for analyzing thermal stresses of a functionally graded material(FGM) using semi-analytical approach. FGM is a nonhomogeneous material whose composition changes continuously from a metal surface to a ceramic surface. An infinite one dimensional FGM plate is considered. The temperature distribution in the FGM is obtained by approximate Green's function solution. To expedite the convergence of the solutions, alternative Green's function solution is derived and shows good agreement with results from finite difference method. Thermal stresses are calculated using temperature distribution of the plate.

The Unsteady 2-D Numerical Analysis in a Horizontal Pipe with Thermal Stratification Phenomena (열성층현상이 존재하는 수평배관내에서의 비정상 2차원 수치해석)

  • Youm, Hag-Ki;Park, Man-Heung;Kim, Sang-Nung
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.27-35
    • /
    • 1996
  • In this paper, an unsteady analytical model for the thermal stratification in the pressurizer surge line of PWR plant has been proposed to investigate the temperature profile, flow characteristics, and thermal stress in the pipe. In this model, the interface level, between hot and cold fluid, is assumed to be a function of time while the other models had developed for time independent or steady state. The dimensionless governing equations are solved by using a SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The analysis result for an example shows that the maximum dimensionless temperature difference is about 0.78 between hot and cold sections of pipe wall and the maximum thermal stress by thermal stratification is calculated about 276 MPa at the dimensionless time 27.0 under given conditions.

  • PDF

A Study on the Thermal Stress Analysis of Thermally Sprayed Ceramic Coating (세라믹 용사시의 열응력해석에 관한 연구)

  • 정동원;김귀식;오맹종;조종래
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.227-232
    • /
    • 1998
  • The purpose of this study is to develop a numerical method for analyzing the transient heat transfer and evaluating the residual stress. The analysis of heat transfer and thermal stress are carried out by three-dimensional finite element method. Thermal spraying is one of the most common surface coating techniques to be used for many applications. In order to improve the mechanical properties of flame-sprayed ceramic coating layer, the accurate and effective analysis of heat transfer and thermal stress is essentially required.

  • PDF

Estimation of Hardfacing Material and Thickness of STD61 Hot-Working Tool Steels Through Three-Dimensional Heat Transfer and Thermal Stress Analyses (3 차원 열전달/열응력 해석을 통한 STD61 열간 금형강의 하드페이싱 재료 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.427-436
    • /
    • 2014
  • The goal of this paper is to estimate proper hardfacing material and thickness of STD61 hot-working tool steel through three-dimensional heat transfer and thermal stress analyses. Stellite6, Stellite21 and 19-9DL superalloys are chosen as alternative hardfacing materials. The influence of hardfacing materials and thicknesses on temperature, thermal stress and thermal strain distributions of the hardfaced part are investigated using the results of the analyses. From the results of the investigation, it has been noted that a hardfacing material with a high conductivity and a thinner hardfaced layer are desired to create an effective hardfacing layer in terms of heat transfer characteristics. In addition, it has been revealed that the deviation of effective stress and principal strain in the vicinity of the joined region are minimized when the Stellite21 hardfaced layer with the thickness of 2 mm is created on the STD61. Based on the above results, a proper hardfacing material and thickness for STD61 tool steel have been estimated.

Multi-Crack Problems for Non-homogeneous Material Subjected to Unsteady Thermal Load (비정상 열 하중을 받는 이질재료의 다중 크랙 문제)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • The purpose of this paper is to investigate the time behavior of a multiple crack problems. It is assumed that the medium contains cracks perpendicular to the crack surfaces, that the thermo-mechanical properties are continuous functions of the thickness coordinate. we use the laminated composite plate model to simulate the material non-homogeneity. By utilizing the Laplace transform and Fourier transform techniques, the multiple crack problems in the non-homogeneous medium is formulated. Singular integral equations are derived and solved to investigate the multiple crack problems. As a numerical illustration, transient thermal stress intensity factors(TSIFs) for a functionally graded material plate subjected to sudden heating on its boundary are provided. The variation in the TSIFs due to the change in material gradient and the crack position is studied.

The Analysis of Elasto-Plastic Thermal Stresses for Welding Part in Double Capstan Drum (더블 캡스턴 드럼의 용접부에 대한 탄소성 열응력해석)

  • 김옥삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.329-336
    • /
    • 2000
  • Welding is a important technological method in mechanical engineering. $CO_2$MAG(metal active gas) welding means that metal part in double capstan drum for the inshore and costal vessels are joined by melting(with or without a filler material) or that new material is added to a metal part by melting. The thermal stresses appear due to a non-uniform temperature field, inhomogeneous material properties, external restraint and volume changes during phase transformations. In this study analysis the elasto-plastic thermal stresses distribution of welding part in double capstan drum for the inshore and costal vessels using finite element method (FBM). Therefore it calculates the numerical value that can be applied to the optimum design of welding parts and the shapes. The significant results obtained in this study are summarized as fellows. At early stage of the cooling after welding process, the abrupt thermal stresses gradient has been shown in the vicinity of welding part. In the thermal stresses analysis due to temperature gradient and heat shocking maximum stress was occurred of welding part and stresses were distributed from 54MPa~48MPa.

  • PDF