• Title/Summary/Keyword: 비정상연소

Search Result 92, Processing Time 0.028 seconds

Performance Prediction Method of Hybrid Rocket Motors with Local Variance of Combustion (국부연소 현상을 고려한 하이브리드로켓의 성능예측 기법연구)

  • Cho, Min-Gyung;Heo, Jun-Young;Park, Hyung-Ju;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.517-521
    • /
    • 2009
  • A unsteady internal ballistic analysis model was proposed to take account for the variance of local variance of pressure and velocity along the grain surface of a hybrid rocket combustor. The model of concern in the study was fairly comparable with the test result. The local variation of the oxidizer mass flow rate along grain surface results in chamber pressure, regression rate, and gas velocity change along its flow direction.

  • PDF

Applications of Dynamic Mode Decomposition to Unstable Shock-Induced Combustion (충격파 유도 연소의 불안정성 분석을 위한 Dynamic Mode Decomposition 방법의 적용)

  • Kumar, P. Pradeep;Choi, Jeong-Yeol;Son, Jinwoo;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Dynamic mode decomposition (DMD) method was applied for the further study of periodical characteristics of the unsteady shock-induced combustion. The case of Lehr's experiments was numerically simulated using 4 levels of grids. FFT result reveals that almost all the grid systems oscillate at frequencies around 430-435 kHz and the measureed one is around 425 kHz. To identify more resonant modes with low frequencies, DMD method is adopted for 4 grid systems. Several major frequencies are extracted and their damping coefficients are calculated at the same time, which is a quantification parameter for combustion stabilization.

Introduction of Numerical Simulation Techniques for High-Frequency Combustion Instabilities (고주파 연소불안정 예측을 위한 해석기술 개발 사례)

  • Kim, Seong-Ku;Joh, Miok;Han, Sanghoon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.68-77
    • /
    • 2017
  • High-frequency combustion instability results from a feedback coupling between the unsteady heat release rate and the acoustic waves formed resonantly in the combustion chamber. It can be modeled as thermoacoustic problems with various degrees of the assumptions and simplifications. This paper presents numerical analysis of self-excited combustion instabilities in a variable-length lean-premixed combustor and designs of passive control devices such as baffle and acoustic resonators in a framework of 3-D FEM Helmholtz solver. Nonlinear behaviors such as steep-fronted shock waves and a finite amplitude limit cycle are also investigated with a compressible flow simulation technique.

  • PDF

A Study of Structural Response of Pipes due to Internal Gaseous Detonation of Hydrogen- and Hydrogen-Air Mixtures (수소와 탄화수소 계열 연료의 비정상 연소에 의한 파이프 변형 연구)

  • Kim, Dae-Hyun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1094-1103
    • /
    • 2008
  • A fuel specific detonation wave in a pipe propagates with a predictable wave velocity. This internal detonation wave speed determines the level of flexural wave excitation of pipes and the possibility of resonant response leading to a large displacement. In this paper, we present particular solutions of displacements and the resonance conditions for internally loaded pipe structures. These analytical results are compared to numerical simulations obtained using a hydrocode(multi-material blast wave analysis tool). We expect to identify potential explosion hazards in the general power industries.

Unsteady Analysis for Combustion Characteristics of PRF75 Fuel under HCCI Conditions (균일예혼합 압축착화 조건에서 PRF75 연료의 비정상 연소특성 해석)

  • Oh, Tae Kyun;Lee, Su Ryong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.21-28
    • /
    • 2013
  • HCCI engines have mainly focused on achieving low temperature combustion in order to obtain higher efficiency and lower emission. One of practical difficulties in HCCI combustion is to control the start of combustion and subsequent combustion phasing. The choice of primary reference fuels in HCCI strategy is one of various promising solutions to make HCCI combustion ignition-controlled. The behavior of ignition delay to the frequency variation of sinusoidal velocity oscillation is computationally investigated under HCCI conditions of PRF75 using a reduced chemistry in a counterflow configuration. The second-stage ignition is more delayed as the higher frequency is imposed on nozzle velocity fluctuation whereas the first-stage ignition is not much influenced.

Numerical Study on the Unsteady Solid Rocket Propellant Combustion with Erosive Burning (침식효과를 고려한 고체 로켓 추진제의 비정상 연소에 관한 수치해석)

  • Lee, Sung-Nam;Baek, Seung-Wook;Kim, Kyung-Moo;Kim, Yoon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.774-779
    • /
    • 2009
  • A numerical modelling was performed to predict unsteady combustion processes for the AP/HTPB/Al propellant in a solid rocket motor. Its results were compared with the experimental data. Temporal pressure development was found to match quite well with measured data. A change in propellant surface was traced using the moving grid. The propellant thickness change was also observed to confirm the erosive burning effect.

Numerical Simulation for Detonation Characteristics of Heavily Aluminized High Explosives (알루미늄 입자가 다량 함유된 고폭약의 데토네이션 특성에 대한 수치적 연구)

  • Kim, Wuhyun;Gwak, Min-cheol;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.10-18
    • /
    • 2017
  • The problem of non-ideal detonation propagation velocities in heterogeneous hybrid mixtures is studied in the case of a high explosive with suspended fine aluminum (Al) particles. Since there exist difference in the time scales of the characteristic induction and combustion of High Explosives and solid particles, the process of energy release behind the leading shock front occurs over an extended period of time. The problem is analyzed by the theory of the mechanics of multiphase media with mass, momentum and heat exchanges between particles and gases. The numerical results match the available experimental results of heavily aluminized (5~25% Al weight) HMX explosive obtained previously.

Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust (가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구)

  • Park, Hyung-Ju;Kim, Li-Na;Heo, Jun-Young;Sung, Hong-Gye;Yang, June-Seo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.213-217
    • /
    • 2011
  • Unsteady numerical simulations of pintle nozzles were implemented for solid rocket thrust vector control. The variation of pintle location was considered using unsteady numerical techniques, and dynamic characteristics of various pintle models were investigated. In order to consider the variation of the pintle location, a moving mesh method was applied. The effects of shape and location of the pintle nozzle have been analytically investigated. And the results were compared with numerical results. The chamber pressure, mass flow and thrust are analyzed to take account dynamic characteristics of pintle performance.

  • PDF

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • The flow of combustor in scramjet engine is supersonic speed. So residence time and mixing ratio are very important factors for efficient combustion. This study used open cavity on fuel/air mixing model and laser schlieren was carried out to investigate flow characteristics around a jet orifice and a cavity. A source of illumination has 10 ns endurance time so it can observe unsteady flow characteristics efficiently. Pressure was measured by varying momentum flux ratio. And the change of critical ignition point was observed to change of momentum flux ratio.

  • PDF

The effects of non-uniform droplets distribution on the characteristics of group combustion for liquid fuel droplets cloud (비균일 액적분포가 액적군의 집단연소 특성에 미치는 영향)

  • 김호영;전철균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.479-487
    • /
    • 1987
  • In order to predict the effects of droplets distributions such as number density and droplets size on group combustion characteristics and flame structure for liquid fuel sprays, modifications of group combustions model were made by changing the droplets distributions from uniform to non-uniform. Various droplets distribution models were adopted in this analysis to examine the effect of number density distribution on combustion characteristics and the difference between uniform and non-uniform droplets size distributions for a spherical droplets cloud. As results of present study, hollow droplets could with outer concentrating distribution has shorter total combustion time compare with the case of solid droplets cloud with inner concentrating distribution. Uniform droplets size distribution model predicts the shorter total combustion time compare with non-uniform droplets size distribution model, and the uniform droplets size distribution model may be used to predict the total combustion time for the droplets cloud containing larger initial size of droplets.