• Title/Summary/Keyword: 비정상성 GEV모형

Search Result 20, Processing Time 0.026 seconds

Comparison Study of Uncertainty between Stationary and Nonstationary GEV Models using the Bayesian Inference (베이지안 방법을 이용한 정상성 및 비정상성 GEV모형의 불확실성 비교 연구)

  • Kim, Hanbeen;Joo, Kyungwon;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.298-298
    • /
    • 2016
  • 최근 기후변화의 영향으로 시간에 따라 자료 및 통계적 특성이 변하는 비정상성이 다양한 수문자료에서 관측됨에 따라 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 비정상성 빈도해석에 사용되는 비정상성 확률 모형은 기존의 매개변수를 시간에 따라 변하는 공변량이 포함된 함수의 형태로 나타내기 때문에, 정상성 확률 모형에 비해 매개변수의 개수가 많으며 복잡한 형태를 가지게 된다. 따라서 본 연구에서는 비정상성 고려 시 모형이 복잡해짐에 따라 매개변수 및 확률 수문량의 불확실성이 어떻게 변하는지 알아보고자 하였다. 베이지안 방법은 매개변수 추정 및 확률 수문량의 산정 뿐 아니라 이에 대한 불확실성을 정량화할 수 있는 방법 중 하나이다. 따라서 베이지안 방법에서 매개변수 추정에 주로 쓰이는 Monte Carlo Markov Chain (MCMC) 방법 중 하나인 Metropolis-Hastings 알고리즘을 이용하여 정상성 및 비정상성 GEV모형에 대한 매개변수 및 확률수문량의 사후분포를 산정하였다. 산정된 사후분포의 사후구간을 통해 각 모형의 불확실성을 정량화하였으며, 계산된 불확실성의 비교를 통해 모형의 복잡성이 불확실성에 미치는 영향을 평가하였다.

  • PDF

Application Study of Nonstationary GEV Model for Annual Maximum Precipitation Data using AICc and BIC (AICc와 BIC를 이용한 비정상성 GEV 모형의 적용)

  • Kim, Hanbeen;Kim, Sooyoung;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.143-143
    • /
    • 2015
  • 기존의 빈도해석에서는 자료의 정상성을 가정하며, 이에 따라 적정모형 선정 시에 $x^2$ 검정이나 PPCC(Probability Plot Correlation Coefficient)검정과 같은 적합도 검정방법을 사용한다. 하지만 자료에서 경향성이 나타나거나 평균, 분산, 매개변수 등이 시간에 따라 변하는 등의 비정상성 현상들이 관측됨에 따라 비정상성 빈도해석에 관한 연구들이 활발히 진행되고 있다. 비정상성 빈도해석에서는 시간항과 같은 공변량이 포함된 매개변수를 가지는 비정상성 모형을 적용하게 되는데, 시간에 따라 매개변수가 계속 변하므로 매개변수에 따라 검정통계량이 고정되어 있는 기존의 적합도 검정방법의 적용이 어렵다. 따라서 비정상성 빈도해석의 적정 모형 선정에 적용할 수 있는 방법으로 최우도 함수에 기반한 모형 평가 방법인 AIC와 BIC가 추천되고 있으며 자료길이가 충분하지 않은 경우에는 AIC 대신하여 AICc의 사용이 추천되고 있다. 본 연구에서는 극치사상을 나타내는데 적합한 분포형인 GEV분포형의 위치, 규모 매개변수를 시간항으로 나타낸 다양한 비정상성 GEV모형에 대하여 Monte-Carlo 모의실험을 통해 AICc와 BIC의 적용성을 검토하였으며, 비정상성이 관측되는 실측 자료에 적용해보았다.

  • PDF

Nonstationary Frequency Analysis for Annual Maximum Data

  • Kim, Su-Yeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.4-4
    • /
    • 2017
  • 수문자료의 빈도해석은 자료의 독립성(independence)와 정상성(stationarity)를 가정하여 이뤄진다. 그러나 관측 수문자료에서 비정상성 현상이 발생하고 있다는 사실이 관측되면서 수문자료에 대한 비정상성 빈도해석에 대한 필요성도 커지고 있다. 본 연구의 목적은 수문자료의 빈도해석에서 가장 널리 사용되고 있는 Gumbel 및 GEV 분포에 대한 비정상성 빈도해석 모형을 개발하는 것으로, 이를 위해 비정상성 Gumbel과 GEV 모형의 매개변수를 시간에 따라 변하는 형태로 정의하였다. 비정상성 Gumbel 및 GEV 모형의 정확도를 알아보기 위해 비정상성 모형과정상성 모형을 이용하여 Monte Carlo 모의실험을 수행하였다. 모의실험은 다양한 조건의 재현기간, 표본크기, 매개변수 조건을 고려하여 수행되었다. 그 결과 비정상성 모형의 오차는 비교적 표본크기가 클 때 가장 작은 것으로 나타났다. 또한 복잡한 매개변수의 조합을 가지는 비정상성 모형은 모두 동일한 경향성을 가질 때 가장 작은 오차를 보이는 것으로 나타났다. 비정상성 GEV 모형의 경우는 확률수문량 산정에 음(-)의 형상 매개변수가 큰 영향을 끼치는 것으로 나타났다. 또한 본 연구에서는 비정상성 조건에서 다양하게 존재하는 비정상성 모형 중 어떠한 모형이 주어진 자료에 대해 가장 적절한 모형인지 결정하기 위해 모의실험을 수행하였다. 널리 적용되고 있는 AIC, BIC, likelihood ratio test에 대해 정상성 및 비정상성 Gumbel 모형을 이용하여 모의실험을 수행한 결과, AIC가 비정상성 모형 중 적정 모형 선택에 가장 효과적인 것으로 나타났다. 개발된 비정상성 Gumbel 및 GEV 모형의 적용성을 알아보기 위해 우리나라 연최대강우 자료에 적용한 결과, 위치 매개변수에 시간항을 고려하는 Gumbel 모형이 최적모형으로 가장 많이 선택되는 것으로 나타났다. 따라서 현재 우리나라의 연최대강우자료 중 경향성이 나타나는 자료에 대해서는 위치 매개변수가 시간에 따라 변하는 특성이 가장 많이 나타나고 있는 것으로 판단된다.

  • PDF

Application of Nonstatinoary Regional Frequency Analysis Based on Population Index Flood Model (모분포 홍수지수모형을 이용한 비정상성 지역빈도해석 기법 적용)

  • Kim, Hanbeen;Lee, Joohyung;Park, Jaeheyon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.98-98
    • /
    • 2020
  • 모분포 홍수지수모형은 여러 관측지점의 수문자료를 활용하여 설계수문량을 산정하는 지역빈도해석을 위한 모형 중 하나이다. 기존의 홍수지수모형은 동질지역 내 각 지점의 표본통계량을 통해 표준화된 자료들을 기반으로 설계수문량을 산정하므로 왜곡이나 오차가 발생하는 반면, 모분포 홍수지수모형은 미지의 모분포에 대한 통계량으로 표준화한 설계수문량은 동질지역 내 모든 지점에 대해 동일하다는 가정을 기반으로 지역빈도해석을 수행하므로 보다 정확한 설계수문량 산정이 가능하다. 본 연구에서는 모분포 홍수지수모형에서의 미지의 모분포를 비정상성 GEV분포형으로 가정함으로써 각 지점의 비정상성을 고려한 설계수문량을 산정할 수 있는 비정상성 지역빈도해석 기법을 개발하고 그 적용성을 알아보고자 한다. 이를 위해 우리나라 전역에 분포된 10개의 강우관측 지점을 하나의 지역으로 구성하고 이질성척도를 통해 지역동질성을 확인하였다. 먼저, 각 지점의 모분포를 가정하기 위하여 각 지점의 연 최대치 강우자료에 대하여 Mann-Kendall test를 통해 경향성을 확인하였다. 경향성이 없는 지점의 경우 정상성 GEV분포형, 경향성이 나타나는 지점의 경우 다양한 형태의 비정상성 GEV분포형 중 Akaike information criterion을 통해 선정된 비정상성 GEV분포형을 모분포로 가정하고, 모분포 홍수지수모형을 적용하여 확률강우량을 산정하였다. 대상 지역에 대한 모의실험을 통해 비정상성을 고려한 모분포 홍수지수모형의 성능을 지점빈도해석 및 기존의 홍수지수모형과 비교하였으며, 정상성 지역빈도해석 대비 비정상성 지역빈도해석을 통해 산정된 확률강우량의 비교를 통해 그 적용성을 평가하였다.

  • PDF

The performance evaluation of nonstationary index flood models (비정상성 홍수지수모형의 성능 평가)

  • Nam, Woosung;Kim, Sooyoung;Kim, Taereem;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.26-26
    • /
    • 2015
  • 기후변화나 인위적인 요인 등에 의해 수문 자료에 비정상성(nonstationarity)이 나타나면서 정상성 가정 하에서 수행되는 빈도해석으로는 정확한 확률수문량 산정이 어려운 실정이다. 최근 이를 보완하기 위한 비정상성 빈도해석에 대한 연구가 진행되고 있고, 이와 더불어 비정상성 지역빈도 해석에 대한 관심도 높아지고 있다. 비정상성 지역빈도해석은 대개 홍수지수법(index flood method)을 기반으로 진행되고 있는데, 홍수지수와 성장곡선(growth curve)에 시간에 따른 변화를 고려하느냐의 여부에 따라 다양한 형태의 홍수지수모형이 적용되고 있다. 본 연구는 다양한 형태의 홍수지수모형의 성능을 평가하여 비정상성 자료에 적합한 형태를 선정하는 것을 목적으로 한다. 이를 위해 위치 매개변수가 시간에 따라 변화하는 비정상성 GEV 분포(GEV100)를 모분포로 하는 지점들로 지역들을 구성하고, Monte Carlo 모의를 통해 발생시킨 자료에 여러 형태의 홍수지수모형을 적용하여 각 모형의 성능을 평가하였다. 모의실험 결과 홍수 지수는 시간에 따른 변화가 없고, 성장곡선은 시간에 따라 변화하는 형태인 홍수지수모형이 다른 형태의 모형에 비해 대체로 더 정확한 확률수문량을 산정할 수 있는 것으로 나타났다. 또한 우리나라 기상청 관할 강우 관측 지점들 중 GEV100 분포가 적합한 것으로 선정된 지점들을 하나의 지역으로 구성하여 모의실험에서 적용한 것과 동일한, 여러 형태의 홍수지수모형을 적용한 결과 모의실험 결과와 일치하게 성장곡선에만 비정상성 고려된 홍수지수모형이 상대적으로 정확한 확률강우량을 산정하는 것으로 나타났다. 따라서 GEV100 모형 기반의 비정상성 지역빈도해석을 수행하기 위해서는 성장곡선만 시간에 따라 변화하는 홍수지수모형이 적합할 것으로 판단된다.

  • PDF

Construction of Bivariate Probability Distribution with Nonstationary GEV/Gumbel Marginal Distributions for Rainfall Data (비정상성 GEV/Gumbel 주변분포를 이용한 강우자료 이변량 확률분포형 구축)

  • Joo, Kyungwon;Choi, Soyung;Kim, Hanbeen;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.41-41
    • /
    • 2016
  • 최근 다변량 확률모형을 이용한 빈도해석이 수문자료 등에 적용되면서 다양하게 연구되고 있으며 다변량 확률모형 중 copula 모형은 주변분포형에 대한 제약이 없어 여러 분야에 걸쳐 활발히 연구되고 있다. 강우자료는 기존 일변량 빈도해석을 수행하기 위하여 사용하던 block maxima 방법 대신 최소무강우시간(inter event time)을 통하여 강우사상을 추출하여 표본으로 사용한다. 또한 기후변화로 인한 강우량의 변화등에 대응하기 위하여 비정상성 Generalized Extreme Value(GEV)와 Gumbel 등의 확률분포형에 대한 연구도 많은 부분 이루어져 있다. 본 연구에서는, Archimedean copula 모형을 이용하여 이변량 확률모형을 구축하면서 여기에 사용되는 주변분포형에 정상성/비정상성 분포형을 적용하였다. 모형의 매개변수는 inference function for margin 방법을 이용하였으며 주변분포형으로는 정상성/비정상성 GEV, Gumbel 모형을 적용하였다. 결과로 정상성/비정상성 경향을 나타내는 지점을 구분하고 각 지점에 대한 정상성/비정상성 주변분포형을 적용한 이변량 확률분포형을 구하였다.

  • PDF

Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition (비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석)

  • Kim, Sang Ug;Lee, Yeong Seob
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.567-579
    • /
    • 2015
  • This study performed the non-stationary flood frequency analysis considering time-varying parameters of a probability density function. Also, return period and risk under non-stationary condition were estimated. A stationary model and three non-stationary models using Generalized Extreme Value(GEV) were developed. The only location parameter was assumed as time-varying parameter in the first model. In second model, the only scale parameter was assumed as time-varying parameter. Finally, the both parameters were assumed as time varying parameter in the last model. Relative likelihood ratio test and Akaike information criterion were used to select appropriate model. The suggested procedure in this study was applied to eight multipurpose dams in South Korea. Using relative likelihood ratio test and Akaike information criterion it is shown that the inflow into the Hapcheon dam and the Seomjingang dam were suitable for non-stationary GEV model but the other six dams were suitable for stationary GEV model. Also, it is shown that the estimated return period under non-stationary condition was shorter than those estimated under stationary condition.

Selection of Climate Indices for Nonstationary Frequency Analysis and Estimation of Rainfall Quantile (비정상성 빈도해석을 위한 기상인자 선정 및 확률강우량 산정)

  • Jung, Tae-Ho;Kim, Hanbeen;Kim, Hyeonsik;Heo, Jun-Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.165-174
    • /
    • 2019
  • As a nonstationarity is observed in hydrological data, various studies on nonstationary frequency analysis for hydraulic structure design have been actively conducted. Although the inherent diversity in the atmosphere-ocean system is known to be related to the nonstationary phenomena, a nonstationary frequency analysis is generally performed based on the linear trend. In this study, a nonstationary frequency analysis was performed using climate indices as covariates to consider the climate variability and the long-term trend of the extreme rainfall. For 11 weather stations where the trend was detected, the long-term trend within the annual maximum rainfall data was extracted using the ensemble empirical mode decomposition. Then the correlation between the extracted data and various climate indices was analyzed. As a result, autumn-averaged AMM, autumn-averaged AMO, and summer-averaged NINO4 in the previous year significantly influenced the long-term trend of the annual maximum rainfall data at almost all stations. The selected seasonal climate indices were applied to the generalized extreme value (GEV) model and the best model was selected using the AIC. Using the model diagnosis for the selected model and the nonstationary GEV model with the linear trend, we identified that the selected model could compensate the underestimation of the rainfall quantiles.

Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition (비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석)

  • Lee, Sang-Ho;Kim, Sang Ug;Lee, Yeong Seob;Kim, Hyeong Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.610-610
    • /
    • 2015
  • 수공구조물의 설계에서는 홍수빈도분석을 통해 산정된 특정 재현기간에서의 확률수문량이 설계기준으로 사용된다. 그러나 최근 기후변화로 인해 이상기후 현상이 심해짐에 따라 수문기상자료의 정상성을 가정하는 기존의 홍수빈도분석은 변화되는 수문현상을 적절히 표현하지 못하는 경우가 많다. 본 연구에서는 확률분포의 모수가 시간에 따라 변화하는 비정상성 빈도분석기법을 적용하였으며 확률분포의 모수들을 최우추정법으로 추정하였다. 또한, 분위수 추정과정에서도 비정상성을 고려하여 정상성 가정에서 산정된 재현기간 및 위험도와 비교분석하였다. 확률분포는 GEV 분포를 사용하여 정상성 및 비정상성 모형 4개를 구축하였다. 특히, 비정상성 모형은 위치모수만 선형 경향성을 가지는 경우, 규모모수만 선형경향성을 가지는 경우, 위치 및 규모모수가 선형경향성을 가지는 경우의 3가지로 구분하여 적용하였다. 구축된 4개의 모형 중 적합모형을 선정하기 위해 우도비 검정과 Akaike 정보기준을 사용하였으며 적합모형선정 절차를 체계적으로 구축하고 적용하여 적합모형을 선정하였다. 본 연구에서 구축된 비정상성 홍수빈도분석 기법은 우리나라의 8개 다목적댐 (충주댐, 소양강댐, 안동댐, 임하댐, 합천댐, 대청댐, 섬진강댐, 주암댐)으로부터 취득된 과거 관측 댐 유입량을 대상으로 하여 적용되었다. 우도비 검정과 Akaike 정보기준을 이용한 적합 모형 선정 결과 합천댐과 섬진강댐이 비정상성 GEV 모형에 적합한 것으로 분석되었고, 나머지 지점의 다목적댐들은 정상성 모형에 적합한 것으로 분석되었다. 합천댐과 섬진강댐의 경우 비정상성 가정에서 산정된 재현기간이 정상성 가정에서 산정된 재현기간보다 매우 작게 산정되었으며 확률수문량과 위험도는 크게 산정되었다. 적합모형으로 정상성 모형이 선정된 6개의 다목적댐 중 소양강댐은 Mann-Kendall 비모수 경향성 검정 결과 유의하지는 않지만 비교적 큰 선형경향성을 가지고 있었다. 비록 비정상성 모형이 적합모형으로 선정되지는 않았지만 소양강댐에 비정상성 모형을 가정하여 재현기간과 확률수문량, 위험도를 분석한 결과 정상성 모형 가정에서 산정한 결과와 상당한 차이가 있었다. 이와 같은 결과는 수문자료의 정상성과 비정상성을 고려한 홍수빈도분석이 향후 수공구조물의 설계에 있어서 신뢰성 있는 확률수문량을 결정하는데 도움이 될 것으로 판단된다.

  • PDF

The Assessment of Various Index Flood Models for Nonstationary Regional Frequency Analysis (비정상성 지역빈도해석을 위한 홍수지수법의 형태에 따른 성능 평가)

  • Kim, Hanbeen;Kim, Sunghun;Joo, Kyungwon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.80-80
    • /
    • 2017
  • 최근 수문자료에 비정상성이 관측됨에 따라 비정상성 지역빈도해석에 대한 연구가 진행되고 있다. 홍수지수법 (index flood method)은 지역빈도해석에서 가장 널리 사용되는 방법으로 각 지점의 특성을 반영하는 홍수지수 (index flood)와 지역적 특성을 대표하는 성장곡선 (growth curve)을 통해 확률수문량을 산정하며, 비정상성 지역빈도해석의 경우 홍수지수법 내의 요소들을 시간에 대한 함수로 정의함으로써 비정상성을 반영한다. 본 연구에서는 다양한 형태의 비정상성 홍수지수법을 통해 비정상성 지역빈도해석을 수행하고 각 방법에 따른 성능을 비교하였다. 이를 위해 경향성을 가지는 매개변수를 포함하는 비정상성 분포형을 모분포로 가지는 자료를 생성하였으며, 이를 기반으로 다양한 경향성을 가지는 자료들로 지역을 구성하였다. 구성된 지역에 대해 동질성 검토를 수행하여 비정상성 자료들이 포함된 지역의 동질성을 확인하였으며, Monte Carlo 모의실험을 통해 각 비정상성 홍수지수모형에 대한 확률수문량의 RRMSE와 RBIAS를 산정하여 성능을 평가하였다.

  • PDF