기계학습 분야에서 모델을 학습시키려면 많은 양의 데이터가 필요하다. 최근에는 컴퓨터 비전 분야에서 데이터가 적은 환경에서 모델을 학습하는 다양한 방법들이 소개되고 있다. 하지만 대부분의 방법을 사용하기 위해서는 어느 정도 최소한의 학습 데이터가 필요하기 때문에 극심하게 데이터가 부족한 환경에서는 사용하기 어렵다. 본 논문에서는 컴퓨터 비전 분야에서 기계학습을 사용할 때 극심하게 데이터가 부족한 환경에서 시뮬레이션 도구를 활용한 인조 데이터 생성 방법을 제안한다. 실험 결과를 통해 시뮬레이션 도구를 활용하여 생성한 인조 데이터로 학습한 모델이 실제 데이터만을 학습한 모델을 대체할 수 있음을 확인하였고, F-1 점수와 정확도가 향상함을 실험적으로 확인하였다.
기존에 성격이 다른 두 가지 이상의 센서를 이용하기 위해서는 각각의 센서의 입력 데이터를 처리하는 알고리즘이 필요하게 되고, 적용한 알고리즘에 의해 출력된 최종 값 중에서 그 상황에 알맞은 값을 선택하여 사용하는 계층적 구조를 사용하게 된다. 계층적 구조가 아니더라도 비슷한 형태의 데이터를 얻어 이를 가지고 최종 로봇을 제어하기 위한 출력을 만들게 된다 본 논문에서는 비전 센서와 초음파 센서에서 입력되는 성격이 다른 데이터를 가지고, 신경망을 이용하여 최종 출력을 얻어냄으로써 2가지 센서의 입력 데이터를 처리하기 위한 과정을 간단히 하고 두 가지 센서가 서로를 보완 할 수 있도록 하는 방법을 제시한다.
본 논문에서는 컴퓨터의 정보처리 능력과 시각기능인 CCD 카메라의 영상처리 능력을 결합시켜 극한 상황에서도 실제 시스템을 효과적으로 제어할 수 있는 실시간 비전시각 제어시스템을 제안하고, 이를 대표적인 벤치마컴 시스템인 도립진자 시스템에 적용하여 실증하였다. 우선, 전용화 된 하드웨어를 사용하지 않고. 컴퓨터를 직접 사용하므로 영상처리 중에 발생하는 많은 데이터에서 필요한 정보를 신속하게 획득하고 처리할 수 있는 새로운 알고리즘을 제안하고 이를 시뮬레이션을 통하여 검증하였다. 또한, 실제 비전 제어시스템을 제작하고, 제안된 알고리즘을 비선형 도립진자의 제어에 적용하여 퍼지 제어기를 설계하므로 컴퓨터를 이용한 실시간 비전 시각 영상처리 제어의 가능성과 우수성을 입증하였다.
본 논문에서는 3D 메시 정보, RGB-D 손 자세 및 2D/3D 손/세그먼트 마스크를 포함하여 인간의 손과 관련된 다양한 컴퓨터 비전 작업에 사용할 수 있는 새로운 다중 모달 합성 벤치마크를 제안 하였다. 생성된 데이터셋은 기존의 대규모 데이터셋인 BigHand2.2M 데이터셋과 변형 가능한 3D 손 메시(mesh) MANO 모델을 활용하여 다양한 손 포즈 변형을 다룬다. 첫째, 중복되는 손자세를 줄이기 위해 전략적으로 샘플링하는 방법을 이용하고 3D 메시 모델을 샘플링된 손에 피팅한다. 3D 메시의 모양 및 시점 파라미터를 탐색하여 인간 손 이미지의 자연스러운 가변성을 처리한다. 마지막으로, 다중 모달리티 데이터를 생성한다. 손 관절, 모양 및 관점의 데이터 공간을 기존 벤치마크의 데이터 공간과 비교한다. 이 과정을 통해 제안된 벤치마크가 이전 작업의 차이를 메우고 있음을 보여주고, 또한 네트워크 훈련 과정에서 제안된 데이터를 사용하여 RGB 기반 손 포즈 추정 실험을 하여 생성된 데이터가 양질의 질과 양을 가짐을 보여준다. 제안된 데이터가 RGB 기반 3D 손 포즈 추정 및 시맨틱 손 세그멘테이션과 같은 품질 좋은 큰 데이터셋이 부족하여 방해되었던 작업에 대한 발전을 가속화할 것으로 기대된다.
Through welding fabrication, user can feel an surficaial and capable unsatisfaction because of welded defects, Generally speaking, these are called weld defects. For checking these defects effectively without time loss effectively, weldability estimation system setup isan urgent thing for detecting whole specimen quality. In this study, by laser vision camera, catching a rawdata on welded specimen profiles, treating vision processing with these data, qualititative defects are estimated from getting these information at first. At the same time, for detecting quantitative defects, whole specimen weldability estimation is pursued by multifeature pattern recognition, which is a kind of fuzzy pattern recognition. For user friendly, by weldability estimation results are shown each profiles, final reports and visual graphics method, user can easily determined weldability. By applying these system to welding fabrication, these technologies are contribution to on-line weldability estimation.
최근 소셜 메신저를 통해 많은 사람들이 의사소통을 주고받음에 따라, 텍스트에서 감정을 파악하는 것이 중요하다. 따라서, 감정이 태깅된 데이터가 필요하다. 하지만, 기존 연구는 감정이 태깅된 데이터의 양이 많지가 않다. 이는 텍스트에서 감정을 파악하는데 성능 저하를 야기할 수 있다. 이를 해결하기 위해, 본 논문에서는 단어 매칭 방법과 형태소 매칭 방법을 이용하여 많은 양의 한국어 감정 태깅 데이터셋인 EmoNSMC 를 구축하였다. 구축한 데이터셋은 네이버 영화 감상 리뷰 데이터 (NSMC)에 디스턴트 수퍼비전 방법 (distant supervision) 방법을 적용하여 weak labeling을 진행하였고, 이 과정에서 한국어 감정 어휘 사전 (KTEA) 을 이용하였다. 구축된 데이터셋의 감정 분포 결과, 형태소 매칭 방법을 통해 구축한 데이터셋이 좀 더 감정 분포가 균등한 것을 확인할 수 있었다. 해당 데이터셋은 공개되어 있다.
본 논문에서는 데이터 처리에 대한 비전문가들도 시계열 데이터를 필요한 형태로 쉽게 변환하는 방법을 제안한다. 이를 위해 국내 및 해외의 다양한 공공 시계열 데이터들의 저장 형태를 파악하였고 가장 빈번하게 사용되는 4가지의 시계열 데이터 변환 패턴을 정의하였다. 또한, 변환 패턴을 정형화하기 위해 파라미터를 구조화하고 이를 해석하여 변환하는 변환 모듈을 개발하였다. 변환 모듈은 제안하는 입력 파라미터의 값에 따라 데이터 변환이 이루어지기 때문에 비전문가의 활용이 쉬우며 다수의 공개 데이터를 원하는 형태로 변환할 수 있음을 검증하였다.
SMT장비는 전자 부품을 흡착하여 PCB상에 정확히 실장 하는 장비이다. 이를 위해서는 중간 위치에 설치된 카메라 앞에서 정지하여 비전검사를 한 후 실장 위치로 이동한다. 본 논문에서는 카메라 앞에서 멈추어 비전 검사를 한 후 실장하는 방법(stop-motion)과 카메라 앞에서 움직이면서 비전 검사를 한 후 실장하는 방법(fly-motion)을 비교하였다. 그 결과 fly-motion의 시간 효율이 stop-motion보다 9% 증가한 것을 보여주었다.
인공지능 기반의 생활폐기물의 인식 및 선별에서, 선별 정확도의 저하는 인식 대상의 형태적 다양성과 학습데이터 부족 및 불균등성에 기인한다. 본 연구에서는 비전 인공지능 기반의 효과적인 폐기물 선별을 위한 인식 시스템 및 감독학습 기반의 인공지능 학습 기법을 제안한다. 생활폐기물 중 순환자원적 가치가 높은 CAN, PET, 그리고 이와 형상적으로 유사한 폐기물에 대해 본 연구에서 제안된 시스템에서 물체원형 및 훼손된 형태의 총 18 종 이미지 데이터를 대상으로, 감독학습기반의 인공지능 모델 제작에서 최적의 데이터 레이블링을 위한 분류체계를 제시한다.
본 논문에서는 Chat GPT API 를 활용하여 웹 대시보드를 기획하는 것을 다루고 있다. 이 대시보드는 개인과 업무에서 생성된 데이터를 통합하여 데이터 분석을 쉽게 할 수 있도록 도와주며, 머신 러닝 절차를 기반으로 화면 구성이 이루어졌다. 이를 통해 비전문가도 쉽게 데이터 전처리, 시각화, 학습, 저장소 등의 기능을 사용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.