• Title/Summary/Keyword: 비적합 변위모드

Search Result 10, Processing Time 0.023 seconds

Development of 4-node Plate Bending Element using Nonconforming Displacement Modes (비적합 변위모드를 이용한 4절점 평판휨요소의 개발)

  • 박용명;최창근
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.179-188
    • /
    • 1997
  • A 4-node element for efficient finite element analysis of plate bending is presented in this paper. This element is formulated based on Mindlin plate theory to take account of shear deformation. To overcome the overestimation of shear stiffness in thin Mindlin plate element, especially in the lower order element, five nonconforming displacement modes are added to the original displacement fields. The proposed nonconforming element does not possess spurious zero-energy mode and does not show shear locking phenomena in very thin plate even for distorted mesh shapes. It was recognized from benchmark numerical tests that the displacement converges to the analytical solutions rapidly and the stress distributions are very smooth. The element also provides good results for the case of high aspect ratio.

  • PDF

A Four-node General Shell Element with Drilling DOFs (면내회전자유도를 갖는 4절점 곡면 쉘요소)

  • Chung, Keun-Young;Kim, Jae-Min;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.37-52
    • /
    • 2012
  • In this study, a new 4-node general shell element with 6 DOFs per node is presented. Drilling rotational degrees of freedom are introduced by the variational principle with an independent rotation field. In formulation of the element, substitute transverse shear strain fields are used to avoid shear locking, while four nonconforming modes are applied in the in-plane displacement fields as a remedy for membrane locking. In addition, a direct modification method for nonconforming modes is employed in the numerical implementation of nonconforming modes to represent constant strain states. A 9-points integration rule is adopted for volume integration in the computation of the element stiffness matrix. With the combined use of these techniques, the developed shell element has no spurious zero energy modes, and can represent a constant strain state. Several numerical tests are carried out to evaluate the performance of the new element developed. The test results show that the behavior of the elements is satisfactory.

Estimation of the Moving Load Velocity Using Micro Genetic Algorithm (마이크로 유전 알고리즘을 이용한 교통하중의 속도추정)

  • Tak, Moon-Ho;Noh, Myung-Hyun;Park, Tae-Hyo;Park, In-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.292-295
    • /
    • 2009
  • 본 논문에서는 평판구조물의 정적 및 동적해석에 사용할 목적으로 성능이 향상된 평판유한요소를 제시하였다. 이 요소는 비적합변위형과 선택적 감차적분방법 그리고 대체전단변형률장을 복합적으로 적용하여 각각의 장점들을 포함하는 향상된 거동을 보여주고 있다. 또한 비적합변위형의 적용으로 발생되는 조각시험의 실패 문제점을 해결하기 위하여 직접수정법을 평판유한요소의 개선에 사용하였다. 대표적인 검증문제에 대한 수치해석작업을 통하여 본 연구에서 개발한 요소는 가상적인 제로에너지모드 및 전단잠김현상의 발생과 같은 문제를 나타내지 않음을 알 수 있었다. 특히 찌그러진 형상으로 모형화 한 경우에 있어서도 전단잠김현상이 발생하지 않았다. 본 연구에서 수행한 동적반응해석 시험에 있어서도 이론해와 잘 일치하는 결과를 보여주었다.

  • PDF

Static and Dynamic Analysis of Plate Structures using a High Performance Finite Element (고성능 유한요소를 이용한 평판구조물의 정적 및 동적해석)

  • Han In-Seon;Kim Sun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.311-320
    • /
    • 2005
  • In this paper an enhanced quadratic finite element for static and dynamic analysis of plate structures is presented. The performance of a proposed plate element is improved by the coupled use of non conforming displacement modes, the selective integration scheme, and the assumed shear strain fields. An efficient direct modification method is also applied to this element to solve the problem such as failure of the patch test due to the adoption of non conforming modes. The proposed quadratic finite element does not show any spurious mechanism and does not produce shear locking phenomena even with distorted meshes. It is shown that the results obtained by this element converged to analytical solutions very rapidly tough numerical tests for standard benchmark problems. It is also noted that this element is applicable to transient dynamic analysis of Mindlin plates.

Development of an Enhanced 8-node Hybrid/Mixed Plane Stress Element : HQ8-14βElement (8절점 Hybrid/Mixed 평면응력요소)

  • Chun, Kyoung Sik;Park, Won Tae;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.319-326
    • /
    • 2006
  • A new enhanced 8-node hybrid/mixed plane stress elements based on assumed stress fields and modifed shape functions has been presented. The assumed stress fields are derived from the non-conforming displacement modes, which are less sensitive to geometric distortion. Explicit expression of shape functions is modifed so that it can represent any quadratic fields in Cartesian coordinates under the same condition as 9-node isoparametric element. The newly developed element has been designated as 'HQ8-$14{\beta}$'. The presented element is compared with existing elements to establish its accuracy and efficiency. Over a wide range of mesh distortions, the element presented here is found to be exceptionally accurate in predicting displacements.

Buckling Analysis of New Construction Material(GFRP) (건설신소재(섬유보강 플라스틱관 : GFRP)의 좌굴해석에 관한 연구)

  • 조병완;조태준
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.133-140
    • /
    • 1995
  • The buckling analysis of Glass Fiber Reinforced Plastic pipes was studied through a three dimentsional finite element method. In the finite element analysis, an improved degenerated shell element with incompatible modes and assumed shear strain fields are employed with 3 displacements and 2 rotations for each joints. Buckling analysis is carried out for various thicknesses and different fiber orientations. Finite element results show that the buckling load increases as the thickness does with the variation of coupling stiffness.

  • PDF

Improvement of Enhanced Assumed Strain Four-node Finite Element Based on Reissner-Mindlin Plate Theory (개선된 추가변형률 4절점 평판휨 요소)

  • Chun, Kyoung Sik;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.295-303
    • /
    • 2004
  • In this paper, an improved four-node Reissner-Mindlin plate-bending element with enhanced assumed strain field is presented for the analysis of isotropic and laminated composite plates. To avoid the shear locking and spurious zero energy modes, the transverse shear behavior is improved by the addition of a new enhanced shear strain based on the incompatible displacement mode approach and bubble function. The "standard" enhanced strain fields (Andelfinger and Ramm, 1993) are also employed to improve the in-plane behaviors of the plate elements. The four-node quadrilateral element derived using the first-order shear deformation theory is designated as "14EASP". Several applications are investigated to assess the features and the performances of the proposed element. The results are compared with other finite element solutions and analytical solutions. Numerical examples show that the element is stable, invariant, passes the patch test, and yields good results especially in highly distorted regimes.

Improved Degenerated Shell Finite Elements for Analysis of Shell Structures (쉘구조 해석을 위한 개선된 Degenerated 쉘유한요소)

  • 최창근;유승운
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1990
  • The development of an improved degenerated shell element is presented in this paper. In the formulation of this element, an enhanced interpolation of transverse shear strains in the natural coordinate system is used to overcome the shear locking problem ; the reduced integration technique in in-plane strains is applied to avoid the membrane locking behavior ; and selective addition of the nonconforming displacement modes improve the element performances. This element is free of serious locking problems and undesirable compatible or commutable spurious kinematic deformation modes, and passes the patch tests. To illustrate the performance of this improved degenerated shell element, some benchmark problems are presented. Numerical results indicate that the new element shows fast convergence and reliable solutions.

  • PDF

An Improved Degenerated Shell Element for Analysis of Laminated Composite Structures (복합적층구조 해석을 위한 개선된 쉘요소)

  • Choi, Chang Koon;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.1-10
    • /
    • 1991
  • The paper is concerned with the analysis of laminated composite shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements. The resulting non-linear equilibrium equations are solved by the Newton-Raphson method. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

Nonlinear Analysis of Improved Degenerated Shell Finite Element (개선된 Degenerated 쉘 유한요소의 비선형 해석)

  • 최창근;유승운
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.113-123
    • /
    • 1990
  • The paper is concerned with the elasto-plastic and geometrically nonlinear analysis of shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem ; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior ; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. In the formulation for plastic deformation, the concept of a layered element model is used and the material is assumed von Mises yield criterion. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements and rotations. The resulting non-linear equilibrium equations are solved by the Netwon-Raphson method combined with load or displacement increment. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF