• Title/Summary/Keyword: 비저항이

Search Result 5,031, Processing Time 0.027 seconds

Capacitively-coupled Resistivity Method - Applicability and Limitation (비접지식 전기비저항 탐사 - 적용성과 한계)

  • Lee Seong Kon;Cho Seong-Jun;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • Capacitively-coupled resistivity (CCR) system is known to be very useful where galvanic contact to earth is impossible, such as the area covered with thick ice, snow, concrete or asphalt. This system injects current non-galvanically, i.e., capacitively to earth through line antenna and measures potential difference in a same manner. We derived geometric factor for two types of antenna configuration and presented the method of processing and converting the data obtained with CCR system suitable to conventional resistivity inversion analysis. The CCR system, however, has limitations on use at conductive area or electrically noisy area since it is very difficult to inject sufficient current to earth with this system as with conventional resistivity system. This causes low SM ratio when acquiring data with CCR system and great care must be taken in acquiring data with this system. Additionally the uniform contact between line antennas and earth is also crucial factor to obtain good S/N ratio data. The CCR method, however, enables one to perform continuous profiling over a survey line by dragging entire system and thus will be useful in rapid investigation of conductivity distribution in shallow subsurface.

Negative apparent resistivity in dipole-dipole electrical surveys (쌍극자-쌍극자 전기비저항 탐사에서 나타나는 음의 겉보기 비저항)

  • Jung, Hyun-Key;Min, Dong-Joo;Lee, Hyo-Sun;Oh, Seok-Hoon;Chung, Ho-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • In field surveys using the dipole-dipole electrical resistivity method, we often encounter negative apparent resistivity. The term 'negative apparent resistivity' refers to apparent resistivity values with the opposite sign to surrounding data in a pseudosection. Because these negative apparent resistivity values have been regarded as measurement errors, we have discarded the negative apparent resistivity data. Some people have even used negative apparent resistivity data in an inversion process, by taking absolute values of the data. Our field experiments lead us to believe that the main cause for negative apparent resistivity is neither measurement errors nor the influence of self potentials. Furthermore, we also believe that it is not caused by the effects of induced polarization. One possible cause for negative apparent resistivity is the subsurface geological structure. In this study, we provide some numerical examples showing that negative apparent resistivity can arise from geological structures. In numerical examples, we simulate field data using a 3D numerical modelling algorithm, and then extract 2D sections. Our numerical experiments demonstrate that the negative apparent resistivity can be caused by geological structures modelled by U-shaped and crescent-shaped conductive models. Negative apparent resistivity usually occurs when potentials increase with distance from the current electrodes. By plotting the voltage-electrode position curves, we could confirm that when the voltage curves intersect each other, negative apparent resistivity appears. These numerical examples suggest that when we observe negative apparent resistivity in field surveys, we should consider the possibility that the negative apparent resistivity has been caused by geological structure.

Static Bending 영향에 따른 Ti/Au의 전기적 특성 변화

  • Kim, Sang-Seop;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.370.2-370.2
    • /
    • 2014
  • 본 연구에서는 Bending 시간에 따른 Ti/Au의 전기적 특성 변화에 대한 실험을 진행하였다. 전기적 특성을 평가하기 위해 PET 기판 위에 Ti/Au을 Greek Bridge와 Line Bridge를 합친 Cross Bridge 형태로 증착하였고, Cross Bridge의 Line을 bending하여 시간 경과에 따른 정적인(static) bending 영향을 확인하였다. Bending은 0~100시간까지 진행하였고, Line의 width를 200, 400, 800, $1000{\mu}m$로 가변하여 시간에 따른 비저항의 변화를 측정하였다. 실험결과 Bending시간이 길어짐에 따라 비저항이 감소하였고, 일정시간에서 크게 감소하며, 그 이후에는 포화되는 경향을 보였다. 또한 Width가 증가함에 따라 비저항의 변화가 컸다. 800 um, $1000{\mu}m$에서는 bending 직후 비저항이 초기대비 약 90%까지 떨어졌으며 100시간 후에는 80%까지 감소하였다. 100시간 뒤 Width에 따라 초기대비 비저항이 78%~91%까지 감소하는 것을 확인하였다.

  • PDF

Safety Assessment of Embankment by Analysis of Electrical Properties (전기비저항 물성 분석을 통한 제체의 안정성 검토)

  • Oh, Seok-Hoon;Suh, Baik-Soo
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.245-255
    • /
    • 2008
  • The variation of the electrical property of embankment material was analyzed from laboratory experiments and the result of field survey, in order to enhance the interpretation of electrical resistivity survey frequently used for safety assessment of embankment. At first, the kaolinite, showing similar physical property with core material of embankment, was used to examine the variation of the resistivity value according to degree of consolidation. The test showed that a drop of shear strength induces increase of resistivity value regardless of degree of water content. This result means that porous zones of weak core material in embankment may be appeared as highly resistive part in the electrical resistivity survey. This observation implies that it may fail to detect weak core material by electrical method, if we only try to and zones showing low resistivity value. And, we performed Standard Penetration Test (SPT) to analyze the correlation between electrical property and ground stiffness. Finally, a mechanism to describe the variation of electrical resistivity due to grouting effect was proposed and real field data were analyzed.

Experimental Verification on Factors Affecting Core Resistivity Measurements (II)-Characteristics of Time Series Data and Determination Method of Resistivity (코어비저항 측정에 미치는 영향요소에 대한 실험적 고찰(Ⅱ) - 시계열자료의 특성과 대표비저항 값의 결정)

  • Kim, Yeong Hwa;Choe, Ye Gwon
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.269-276
    • /
    • 1999
  • As a part of trying to get the resistivity values correctly from laboratory core resistivity measurement, the effect of sample holders in resistivity measurement was analyzed and a better way to determine the representative resistivity value from the time series resistivity data was searched. Modified GS type and modified two-electrode type sample holders were devised and their effects have been compared with those of GS and two-electrode type sample holders. The modified two-electrode type sample holder has benefits both in repetition and simplicity in data acquisition. The analysis of distribution trend of the time series resistivity data obtained with different kind of sample holders and source frequencies shows that the maximum curvature point method gives the best result in determining representative resistivity value.

  • PDF

Variation of Electrical Resistivity Characteristics in Sand-Silt Mixtures due to Temperature Change (온도변화에 따른 모래-실트 혼합토의 전기비저항 특성변화)

  • Park, Jung-Hee;Seo, Sun-Young;Hong, Seung-Seo;Kim, YoungSeok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.25-32
    • /
    • 2012
  • The application of electrical resistivity, which is related to charge mobility, has increased in the field of geotechnical engineering for the detection of underground cavern, faults and subsurface pollution level. The purpose of this study is to investigate the variation of electrical resistivity due to temperature change. Sand-silt mixture specimens prepared in the square freezing nylon cell are frozen in the frozen chamber. Four electrodes are attached on the four side walls of the freezing cell for the measurement of electrical resistance during temperature change. Electrical resistances of sand-silt mixtures with different degrees of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60% and 100%) are measured as the temperature of specimens decrease from $20^{\circ}C$ to $-10^{\circ}C$. The electrical resistances determined by Ohm's law are transformed into the electrical resistivity by calibration. Experimental results show that the higher degree of saturation, the lower electrical resistivity at $20^{\circ}C$. Electrical resistivity gradually increases as the temperature decrease from $20^{\circ}C$ to $0^{\circ}C$. For the specimens with the degree of saturation of 15% or higer, electrical resistivity dramatically changes near the temperature of $0^{\circ}C$. In addition, very high electrical resistivity is observed regardless of the degree of saturation if the specimens are frozen. This study provides the fundamental information of electrical resistivity according to the soil freezing and temperature change demonstrates that electrical resistivity be a practical method for frozen soil investigation.

The Crosshole Resistivity Method Using the Mixed Array (혼합배열을 사용하는 시추공간 전기비저항 탐사)

  • Cho In-Ky;Han Sung-Hoon;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.250-256
    • /
    • 2002
  • Resistivity tomography has become an important tool to image underground resistivity distribution. This method has been widely applied to site investigation for engineering and environmental purpose. In resistivity tomography, various electrode arrays can be used and each array has both merits and demerits. For example, the pole-pole array has high signal to noise ratio (S/N ratio), but its resolution is too low. The dipole-dipole array has low S/N ratio, but its resolution is very high. The Pole-dipole may has intermediate Snf ratio and resolution. The modified Pole-dipole array, recently proposed, shows reasonable S/N ratio and resolution, which are comparable to the pole-dipole array. These electrode arrays except the pole-pole array, however, have the problem that the apparent resistivity can diverge at some special electrode Positions. Also, the Pole-Pole array may not reflect the doe resistivity of an anomalous body. In this study, we propose a new electrode array, mixed array, where pole-dipole and modified pole-dipole ways are selectively used with the relative positions of current and potential electrodes. The mixed array has the same level of S/N ratio and resolution as the pole-dipole array and the apparent resistivity does not diverge in the receiver hole. Furthermore, the apparent resistivity using the array can reflect the true resistivity of the anomalous body.

Application of Electrical Resistivity Tomography Using Single Well in Seawater Intrusion Areas (해수침투지역에서 단일 시추공을 이용한 전기비저항 토모그래피 탐사의 적용성)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.369-376
    • /
    • 2007
  • Electrical resistivity tomography was carried out at seawater intrusion monitoring wells located at watershed in coastal areas. It is difficult to identify the characteristics of resistivity near monitoring well in case of using high signalto-noise ratio array due to the high conductivity condition in coastal aquifer although electrical resistivity survey is well adopted to delineate hydrogeological characteristics with the distribution of electrical resistivity. To improve the quality of electrical resistivity survey for two sites with seawater intrusion monitoring wells, inversion with the results of holeto-surface electrical resistivity tomography using single well was executed. The results of inversion for aquifer near wells were verified with the results of drilling log with the informations of fracture, electrical conductivity logging and normal resistivity logging. The inversion for aquifer near one of two wells was also performed at low and high tide with the same electrodes, respectively. From the inversion result, it is possible to obtain the resistivity images with high resolution and to identify the characteristics of aquifer related to seawater intrusion with tidal fluctuation. From this study, it was demonstrated that the hole-to-surface electrical resistivity tomography method accompanied with drilling log, electrical conductivity logging and normal resistivity logging would be useful to delineate the hydrogeological structures near monitoring wells in coastal areas.

Laboratory Study on the Electrical Resistivity Characteristics with Contents of Clay Minerals (점토광물의 함유량에 따른 전기비저항 특성에 관한 실험적 연구)

  • Park Mi-Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.218-223
    • /
    • 2005
  • This study considers to electrical resistivity characteristics for clay minerals types and contents in fractured and fault zone. The electrical resistivity is measured for an artificial agar specimen with clay minerals instead of a natural rock. The artificial agar specimen with clay minerals was special worked in study. The clay minerals used are Kaolinite and Montmorillonite in test, the clay mineral contents increases until $0\~40\%$ to the same specimen. As results, the electrical resistivity of the specimen decreased gradually as the clay mineral contents increases for all types of clay minerals. Montmorillonite shows remarkably lower resistivity than Kaolinite, although its clay content is fewer than that of Kaolinite. Also, a proposed experimental expression shows a good correlation coefficient as high as 0.89 or more in all clay minerals.

Electrical Resistivity of Cylindrical Cement Core with Successive Substitution by Electrolyte of Different Conductivity (전도성이 다른 공극수로 순차 치환한 시멘트 시험편의 전기비저항)

  • Lee, Sang-Kyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.328-337
    • /
    • 2009
  • To investigate the relation between pore fluid conductivity and bulk resistivity of a rock sample it is assumed that electrolyte solution perfectly substitute the pore fluid that occupied the pore space within the sample in general. In this study, it is investigated that how much can the electrolyte solution substitute the pore fluid by repeating the same saturation process. Four kinds of NaCl solutions of 8, 160, 3200, 64000 ${\mu}S$/cm are used. The saturation process has repeated four times for each electrolyte in increasing conductivity order first then four times each in decreasing order. The more the saturation process repeated with the same electrolyte, the more electrolyte solution substitute the pore fluid. Geometric mean of bulk resistivity in increasing and decreasing orders with the same electrolyte solution is assumed to be mostly close to the bulk resistivity with perfect substitution. Bulk resistivity measurements for both increasing and decreasing order differs within 10% to the geometric mean when repeating the saturation process 4 times while maximum 40% difference is observed when single saturation process for each electrolyte solution with increasing order. The modified parallel resistant model can generally represent the relations between pore fluid resistivity and bulk resistivity in the experiment, but more experimental data with various rock samples with different porosity is needed to generalize the model.