Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA: multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 둥이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation )알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉충의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적 중률을 나타내었다.
Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA:multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 등이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적 요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation)알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉층의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.
본 연구는 동물병원 산업에서 동물병원의 시장지향성 활동과 동물병원의 공급업체와의 관계지향성 활동이 동물병원의 사업성과/재무적 및 비재무적에 어떠한 영향을 미치는지 체계적으로 분석하고, 동물병원 경영자의 특성 (경영자의 근속연수)과 동물병원의 사업입지가 이들 영향관계에서 어떠한 조절역할을 하는지를 분석하고자 하였다. 분석 결과, 동물병원의 시장지향성 활동은 동물병원의 재무적 성과와 비재무적 성과 모두에 유의적으로 영향을 미쳤다. 또한 동물병원의 시장지향성 활동은 동물병원 경영자의 근속연수에 따라 사업성과에 유의적인 영향을 미치나, 동물병원의 입지에 따른 동물병원의 시장지향성은 동물병원의 사업성과 유의적인 영향을 미치지 않은 것으로 나타났다. 한편 동물병원의 공급업체와의 관계지향성 활동은 동물병원의 재무적 성과 및 비재무적 성과에 대부분 정의 방향으로 영향을 미치는 것으로 나타났다. 또한 동물병원 경영자의 근속연수에 따라 공급업체와의 관계지향성 활동이 동물병원의 사업성과에 미치는 영향에 관한 연구에서, 경영자가 4년 이상 장기간 근속한 경우 관계지향성 활동이 재무적 성과와 비재무적 성과에 정의 방향으로 영향을 미치지 않았고 비재무적 성과에는 비교적 약하게 영향을 미치는 것으로 나타났다. 동물병원의 사업입지에 따라 관계지향성 활동이 동물병원의 사업성과에 미치는 영향에 관한 연구결과에서, 비 수도권에서 공급업체와의 관계지향성 활동이 재무적 및 비재무적 성과에 매우 유의하게 영향을 미치는 것으로 나타났고, 수도권에서는 관계지형성활동이 재무적 및 비재무적 성과에 모두 영향을 주지 않는 것으로 나타났다. 요약하면, 동물병원의 시장지향성 활동과 공급업체와의 관계지향성 활동이 동물병원의 재무적 및 비재무적 사업성과에 미치는 영향에 관한 전반적인 연구에서, 시장지향성은 동물병원의 사업성과에 일관되게 영향을 미치지만, 공급업체와의 관계지향성 활동은 경영자의 근속기간 및 사업입지에 따라 사업성과에 다른 영향을 미치는 것으로 나타났다. 즉, 동물병원 경영자의 근속연수나 사업입지에 따라 동물병원의 사업전략을 선택적으로 접목해야 함을 알 수 있다. 마지막으로 연구결과에 따른 시사점, 연구의 한계점과 향후 연구방향에 대해 논의를 하였다.
본 연구는 대표자역량, 기술개발인력역량, 경영진역량 등 인적자원 역량과 기업의 재무적/비재무적 성과 사이의 관계를 밝히고자 한다. 인적자원과 기업성과, 중소기업의 성과요인, 재무적 성과와 비재무적 성과에 대한 선행연구를 살펴보고, 이를 바탕으로 연구모형 및 연구가설을 설정한다. 연구 결과, 대표자 역량은 기업의 비재무적 성과와 재무적 성과 모두에 긍정적인 영향을 미치는 것으로 나타났다. 대표자의 동업종 종사경력은 비재무적 성과물인 산업재산권의 등록 수에 긍정적의 영향을 미치며, 대표자의 학력이 높을수록 재무적 성과에 정의 영향을 미치고 있다. 기업 기본역량은 비재무적 성과에는 긍정적인 영향을 미치지만 재무적 성과에는 별다른 영향을 미치지 못하는 것으로 나타났다. 기술인력은 주로 신기술의 개발, 혁신성과물의 창출에 관심을 가지며, 이러한 관심이 궁극적으로는 기업의 재무성과에 영향을 미칠 수도 있으나, 단기적으로 기업성과와는 무관한 것으로 연구되었다. 또한 경영진의 전문성이 장기적으로는 기업의 성과에 영향을 미칠 수도 있으나 재무성과에는 영향을 미치지 못하는 것으로 나타났다.
본 연구는 농업경영체 종사자를 대상으로 SNS 활용을 조절변수로 하여 내부마케팅요인이 기업성과에 미치는 영향에 관하여 분석하였다. 내부마케팅요인을 교육훈련, 커뮤니케이션으로 및 보상시스템으로 구분하고 기업성과를 재무적성과와 비재무적성과의 하위변수로 설정하였다. 농업경영체 종사자들로부터 수집한 설문지 349부를 실증분석에 사용하였다. SPSS v22.0과 Process macro v3.4를 사용한 분석결과는 첫째, 커뮤니케이션과 보상시스템은 재무적성과에 유의한 영향을 미치고 교육훈련은 재무적성과에 유의한 영향을 미치지 않는 것으로 나타났다. 둘째, 커뮤니케이션은 비재무적성과에 유의한 영향을 미치며 교육훈련은 비재무적성과에 부(-)의 유의한 영향을 미치고 보상시스템은 비재무적성과에 유의한 영향을 미치지 않는 것으로 나타났다. 셋째, SNS 활용은 내부 마케팅요인과 재무적성과 간의 관계를 유의하게 조절하는 것으로 나타났다. 넷째, SNS 활용은 내부마케팅요인과 비재무적성과 간의 관계를 유의하게 조절하는 것으로 나타났다. 본 연구는 농업경영체의 성과에 영향을 미치는 내부마케팅요인을 발굴했다는 의의를 가진다. 후속 연구로는 매개변수의 발굴로 형성된 매개모형에 대한 연구와 추가로 매개변수가 도입된 조건부과정 모형을 통한 조절된 매개분석을 위한 연구가 필요할 것으로 보인다.
본 연구는 국내 창업보육센터 입주기업을 대상으로 코로나19 발생 초기 코로나19에 대한 위험인식이 경영활동과 경영성과에 미치는 영향을 조사하는 데 주요 목적이 있다. 창업보육센터 입주기업의 경영활동에는 재무관리, 연구개발, 마케팅, 고용조정 활동을 주요 변수로 설정하였고, 경영성과에는 재무적 성과와 비재무적 성과를 주요 변수로 설정하였다. 연구 결과, 코로나19 위험인식은 창업보육센터 입주기업의 경영활동 중 고용조정에만 유의한 영향을 미치고, 재무관리, 연구개발, 마케팅에는 영향을 미치지 않는 것으로 나타났다. 또한, 코로나19 위험인식은 재무적·비재무적 성과에 모두 부의 방향으로 유의한 영향을 미치는 것으로 나타났다. 창업보육센터 입주기업의 경영활동 중 재무관리와 마케팅은 재무적 성과에 유의한 영향을 미쳤지만 연구개발과 고용조정은 재무적 성과에 영향을 미치지 않는 것으로 나타났다. 연구개발과 마케팅은 비재무적 성과에 유의한 영향을 미쳤지만 재무관리와 고용조정은 비재무적 성과에 유의한 영향을 미치지 않는 것으로 나타났다. 마지막으로 창업보육센터 입주기업을 초기창업기업, 도약기업, 성장기업으로 나누어 살펴본 결과, 유일하게 마케팅 활동만 세 유형에서 공통적으로 비재무적 성과에 유의한 영향을 미치는 것으로 나타났다.
한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
/
pp.139-148
/
1999
오늘날 기술집약적인 벤처기업들에 대한 관심이 집중되고 있다. 소수의 진취적인 벤처기업들이 기술개발 및 신상품 개발 등 두드러진 활약을 보이고 있기 때문이다. 그러나 실제 이 벤처기업의 성공 가능성은 그렇게 높지 않다. 특히 벤처기업 환경이 아직 미약한 국내의 경우 위험부담이 훨씬 더 크다. 이러한 벤처기업 환경에서 투자대상 벤처기업을 선정하는 것은 매우 전략적인 의사결정이다. 일반적으로 일반 벤처투자가들은 관심이 있는 산업에 해당하는 기업의 사업계획서와 기초적인 관련 정보를 토대로 투자여부를 결정한다. 그렇지만 실제로는 이와 같은 분석에 필수적으로 요구되는 정보가 불확실할 뿐만 아니라 기술분야에 대한 전문적 지식도 부족하기 때문에 투자 여부를 결정하는 것은 매우 복잡하고 어려운 문제이다. 그러므로 투자대상 벤처기업의 선정을 효과적으로 지원해주는 체계적인 접근이 필요하다. 특히 벤처 사업과 관련된 기술 동향 및 수준 등에 관련된 전문 지식과 경험이 체계적으로 제공되어야 하고 또한 벤처 투자가의 개인적 경험과 판단이 평가 프로세스에 직접적으로 반영될 수 있어야 한다. 이에 본 연구에서는 전문가의 지식과 경험을 체계화하고 투자가의 개인적 판단을 효과적으로 수용할 수 있는 전문가시스템의 접근방법을 제시하고자 한다. 투자대상 벤처기업의 선정을 위한 전문가시스템을 구축하기 위해 본 연구에서는 다양한 정보수집 과정을 거쳤다. 우선 벤처 투자와 관련된 기존 문헌을 심층 분석하였으며 아울러 벤처 투자 업계에서 활약중인 전문 벤처캐피탈리스트들과의 수차례 인터뷰를 통해 벤처기업 평가의 주요 요인과 의사결정 과정을 파악할 수 있었다. 이러한 과정을 통하여 본 연구에서는 벤처 투자의 90%를 차지하는 정보통신분야에 속한 기법 중에서 투자대상 벤처기업의 선정을 위한 전문가시스템을 구축중이다.의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and in
한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
/
pp.291-300
/
1999
인터넷을 기반으로 한 정보통신의 급속한 발전이라는 기업환경의 변화에 적응하기 위해서 기업은 점차 모든 경영시스템을 인터넷을 기반으로 하도록 변화시키고 있을 뿐만 아니라, 기업 조직 또한 전세계를 기반으로한 글로벌 기업 형태로 변화하고 있다. 이러한 급속한 경영환경의 변화로 인해서 기업 내에서는 종전과는 다른 형태의 부서간 상호의사결정조정 과정이 필요하게 되었다. 일반 기업들을 대상으로 한 상호의사결정의 지원과정에 대해서는 기존에 많은 연구들이 있었으나 글로벌기업과 같은 네트워크 형태의 새로운 형태의 기업에 있어서의 상호의사결정과정을 지원할 수 있는 의사결정지원시스템에 대해서는 단순한 그룹의사결정지원시스템 또는 분산의사결정지원시스템과 같은 연구들이 주를 이루고 있다. 따라서 본 연구에서는 인터넷 특히, 웹을 기반으로 한 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 메커니즘을 제시하고 이에 기반한 프로토타입 형태의 시스템을 구현하여 성능을 검증하고자 한다. 특히, 기업 내에서 가장 대표적으로 상호의사결정지원이 필요한 생산과 마케팅 부서를 대상으로 상호의사결정지원 메커니즘을 개발하고 실험을 진행하였다. 그 결과 글로벌 기업내의 생산과 마케팅 부서간 상호의사결정을 효율적으로 지원 할 수 있는 상호조정 메카니즘인 개선된 PROMISE(PROduction and Marketing Interface Support Environment)를 기반으로 한 웹 분산의사결정지원시스템 (Web-DSS : Web-Decision Support Systems)을 제안하는 바이다.자대상 벤처기업의 선정을 위한 전문가시스템을 구축중이다.의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer
지식경영을 효과적으로 수행하기 위해서 기업은 지식경영을 구성하고 있는 요소를 정확히 이해할 필요가 있고, 이러한 중요 요소에 따라 투자가 이루어져야 한다. 본 연구는 지식경영의 중요 요소들을 제시함으로써, 앞으로 지식경영을 계획하고 있는 기업이 효과적으로 지식경영을 추진할 수 있는 활동 지침 및 투자 방향을 제시하고자 한다. 이를 위해, 본 연구에서는 각종 국내외 지식경영 관련 문헌에서 논의된 사항을 중심으로, 지식경영을 구성하는 30개의 중요요소를 추출하고, 분석계층도(AHP)를 이용하여 지식경영을 달성하기 위한 요소들을 위계적 구조로 정리하고, 최종단계에서 238개의 지식경영 구현의 평가기준을 마련하였다. 또한 실제로 지식경영 구현 요소들의 상대적 중요성을 파악하기 위해, 먼저 국내에서 지식경영을 추진하고 있거나 관심을 보이고 있는 48개 기업의 담당자 및 관련 부서원을 대상으로 설문조사를 실시하였고, 동시에 지식경영을 실제로 수행하고 있는 13개 기업의 담당자를 대상으로 각 기업에서 추진하고 있는 지식경영의 현황 파악을 위해 지식경영 실천의 평가기준에 대한 설문을 실시하였다. 이 두 가지 설문 조사 결과를 종합해 볼 때, 기업에서는 지식경영 구현 요소 중에서 인프라 내의 프로세스와 프로세스를 구성하는 지식의 활용과 전파 등이 중요하다고 인식하고 있는 반면, 실제로는 인프라 내의 정보기술과 프로세스를 구성하는 다른 한 축인 지식의 창출과 축적 면에 투자가 이루어진 것으로 나타났다. 이 외에도 지식화, 성과와 가치의 연계 그리고 지식의 가시화 등의 요소들은 상대적 중요도 인식과는 반대로 지식경영 추진에 있어 외면당하고 있는 것으로 나타났다. 따라서 본 연구는 지식 경영의 이러한 불균형을 시정할 수 있는 방향으로 앞으로의 투자가 수행되어야 할 것을 제안하고 있다. 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적 중률을 나타내었다.(ⅱ) managemental and strategical learning to give information necessary to improve the making. program and policy decision making, The objectives of the study are to develop the methodology of modeling the socioeconomic evaluation, and build up the practical socioeconomic evaluation model of the HAN projects including scientific and technological effects. Since the HAN projects consists of 18 subprograms, it is difficult In evaluate all the subprograms
균형성과표(BSC) 모형은 기업의 경영성과를 비재무적 지표로서 학습 및 성장성과, 내부 경영프로세스 성과, 고객성과, 재무적 지표로서 재무적 성과를 중심으로 측정하고 평가하는 통합적 성과 측정 시스템이다. 이러한 균형성과표(BSC) 모형은 재무적 성과 지표를 중심으로 기업의 경영성과를 측정하고 평가하는데 있어서 나타나는 한계를 보완하고 종합적으로 측정하고 평가함으로써 합리적인 기업의 성과를 예측하고 측정하는 평가시스템이다. 본 연구에서는 기업이 균형성과표(BSC) 모형을 도입하여 활용하는 경우 도입전과 후의 성과에서 유의미한 차이가 있는지를 구명하고, 비재무적 성과 지표와 재무적 성과 지표, 그리고 전반적인 경영성과 간의 영향관계를 분석하였다. 분석결과 균형성과표(BSC) 모형을 도입하여 활용하는 경우 기업의 학습 및 성장성과에 유의미한 차이가 분석되었으며, 비재무적 성과 지표들은 재무적 성과를 개선하여 전반적인 기업의 경영성과를 향상시키는 것으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.