• Title/Summary/Keyword: 비이력화

Search Result 135, Processing Time 0.026 seconds

The Magnetic Properties of FeBSiNb Alloy Ribbons with High Glass forming Ability (고 비정질 형성능을 가진 FeBSiNb 합금 리본의 자기적 특성)

  • Noh, Tae-Hwan;Kim, Gu-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.154-159
    • /
    • 2002
  • Amorphous FeBSiNb alloy ribbons having bulk glass forming ability and high saturation magnetic flux density were produced by single-roller melt spinning apparatus in the thickness range of 22∼102㎛. With the increase of thickness, the coercive force and squareness ratio decreased, while maximum permeability and AC permeability increased. However electrical resistivity was almost constant. Furthermore refined and complex magnetic domain structure was observed in thicker ribbons owing to the change in internal magnetic anisotropy. For the alloy with the thickness of 81㎛, small coercive force of 24 mOe and high effective permeability of 12,000 at 1㎑ were obtained, those are considered to be better comparing to the conventional soft magnetic amorphous alloys (∼20 ㎛). The good soft magnetic properties of the thick FeBSiNb amorphous alloys were attributed to the decrease in surface pinning effect during wall motion, appearance of perpendicular anisotropy and resulted domain refinement.

Structural Performance Evaluation of Reinforced Concrete Frame and Shear Wall with Various Hoop Ratios of Boundary Column (철근콘크리트 프레임 및 전단벽체의 경계기둥 띠철근비 변화에 따른 구조성능 평가)

  • 신종학;하기주;전찬목
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.303-311
    • /
    • 1998
  • Ten reinforced concrete rigid frames and infilled shear wall frames were tested under both vertical and cyclic loadings. Experiments were carried out to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeledin one-third scale size. Based on the test results reported in this study, the follwing conclusions can be made. For the rigid frame type and the fully rigid babel type shear wall specimens, the hysteresis diagrams indicate that the degradations of their strength were developed slowly beyond maximum carrying capacity. It was shown that when the hoop reinforcement ratio became higher, the energy dissipation capacity became larger and the failure mode became ductile. The specimens designed by the less hoop reinforcement for the fully rigid babel type shear wall, were mainly failed due to diagonal crack in comparison with the specimens designed by the larger hoop reinforcement ratio. Maximum horizontal resisting moment capacity of speciment designed by the fully rigid babel shear wall were increased by 5.47~7.95 times in comparison with the rigid frame type.

Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test (원심모형실험에서 관측된 건조 지반-말뚝 동적 상호작용의 수치 모델링)

  • Kown, Sun-Yong;Kim, Seok-Jung;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.5-14
    • /
    • 2016
  • Numerical simulation of dynamic soil-pile-structure interaction embedded in a dry sand was carried out. 3D model of the dynamic centrifuge model tests was formulated in a time domain to consider nonlinear behavior of soil using the finite difference method program, FLAC3D. As a modeling methodology, Mohr-Coulomb criteria was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling (Kim et al., 2012) was used as boundary condition to reduce analysis time. Calibration process for numerical modeling results and test results was performed through the parametric study. Verification process was then performed by comparing numerical modeling results with another test results. Based on the calibration and validation procedure, it is identified that proposed modeling method can properly simulate dynamic behavior of soil-pile system in dry condition.

Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model (3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구)

  • Kwon, Sun-Yong;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.51-62
    • /
    • 2016
  • Parametric studies for various site conditions by using 3d numerical model were carried out in order to estimate dynamic behavior of soil-pile-structure system in dry soil deposits. Proposed model was analyzed in time domain using FLAC3D which is commercial finite difference code to properly simulate nonlinear response of soil under strong earthquake. Mohr-Coulomb criterion was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling was used as boundary condition to reduce analysis time. Also, initial shear modulus and yield depth were appropriately determined for accurate simulation of system's nonlinear behavior. Parametric study was performed by varying weight of superstructure, pile length, pile head fixity, soil relative density with proposed numerical model. From the results of parametric study, it is identified that inertial force induced by superstructure is dominant on dynamic behavior of soil-pile-structure system and effect of kinematic force induced by soil movement was relatively small. Difference in dynamic behavior according to the pile length and pile head fixity was also numerically investigated.

Priority Area Prediction Service for Local Road Packaging Maintenance Using Spatial Big Data (공간 빅데이터를 활용한 지방도 포장보수 우선지역 예측 서비스)

  • Minyoung Lee;Jiwoo Choi;Inyoung Kim;Sujin Son;Inho Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.79-101
    • /
    • 2023
  • The current status of local road pavement management in Jeollabuk-do only relies on the accomplishments of the site construction company's pavement repair and is only managed through Microsoft Excel and word documents. Furthermore, the budget is irregular each year. Accordingly, a systematic maintenance plan for local roads is necessary. In this paper, data related to road damage and road environment were collected and processed to derive possible areas which could suffer from road damage. The effectiveness of the methodology was reviewed through the on-site inspection of the area. According to the Ministry of Land, Infrastructure and Transport, in 2018, the number of damages on general national roads were about 47,000. In 2019, it reached around 38,000. Furthermore, the number of lawsuits regarding the road damages were about 93 in 2018 and it increased to 119 in 2019. In the case of national roads, the number of damages decreased compared to 2018 due to pavement repairs. To measure the priorities in maintenance of local roads at Jeollabuk-do, data on maintenance history, local port hole occurrence site, overlapping business section, and emergency maintenance section were transformed into data. Eventually, it led to improvements in maintenance of local roads. Furthermore, spatial data were constructed using various current status data related to roads, and finally the data was processed into a new form that could be utilized in machine learning and predictions. Using the spatial data, areas requiring maintenance on pavement were predicted and the results were used to establish new budgets and policies on road management.

Study on the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel (초음속 풍동에서 발생하는 충격파의 히스테리시스 현상에 관한 연구)

  • Lee, Ik In;Han, Geu Roo;Kim, Teo Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • Hysteresis phenomena are often encountered in a wide variety of fluid flow systems used in industrial and engineering applications. Hence, in recent years, a significant amount of research been focusing on clarifying the physics of the flow hysteresis appearing during the transient change of the pressure ratios and influencing the performance of the supersonic wind tunnel. However, investigations on the hysteresis phenomenon, particularly when it occurs inside the supersonic wind tunnel, are rare. In this study, numerical simulations were carried out to investigate the hysteresis phenomena of the shock waves encountered in a supersonic wind tunnel. The unsteady and compressible flow was analyzed with an axisymmetric model, and the N-S equations were solved by using a fully implicit finite volume scheme. The optimal pressure ratio was determined from the hysteresis curves, and the results can be utilized to operate the wind tunnel efficiently.

Changes in Rheological Properties of O/W Emulsions according to the Type of Nonionic Surfactant and Emulsion Stabilizer (비이온 계면활성제, 유화안정제 종류에 따른 O/W 유화 제형의 유변학적 특성 변화)

  • Choi, Joong Seok;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.415-420
    • /
    • 2019
  • To investigate the effect of nonionic surfactant and emulsion stabilizer on O/W emulsions, various emulsion formulations with different types of nonionic surfactants and emulsion stabilizers were prepared and their rheological properties were compared. In this study, polysorbate 60 (Tween 60), PEG-60 hydrogenated castor oil (HCO 60), octyldodeceth-16 (OD 16), and ceteareth-6 olivate (Olivem 800) were used as hydrophilic nonionic surfactants, whereas cetyl alcohol, glyceryl monostearate, and stearic acid as emulsion stabilizers. Phase separation occurred only in the emulsion formulation with octyldodeceth-16 and all other emulsion formulations maintained a stable phase. The viscosity, hardness, and creaminess of emulsion formulation using a mixture of ceteareth-6 olivate and cetyl alcohol were the highest, and the emulsified droplet size was also the largest. These results are due to the formation of a network structure texture with the development of a large amount of liquid crystal in the O/W emulsion. In this formulation, the value of elastic modulus was large and the thixotropic behavior, in which the viscosity varies with the history of external force, was observed.

Comparison of physical properties and air permeability in the sawdust during wetting and drying procedure (습윤 및 건조과정에서의 톱밥내 물리적 성상과 공기투과성의 변화)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2009
  • Moisture is one of the important design factors that affects to the changes of physical properties and air permeability in the composting matrix. This study examines the effects of moisture during the wetting and drying procedure on physical properties like bulk density, particle size, free air space and air permeability in the sawdust used as the bulking agent in composting process. During both procedures of wetting and drying of the water, with increasing moisture content, bulk density and particle size increased, but FAS decreased. In the range of near 40 to 60% moisture content on a wet basis, particle size and FAS in wetting procedure were larger and higher than those in drying procedure. During wetting procedure, pressure drop continuously decreased ranging from near 20 to 60% moisture content, despite of decreasing FAS as a consequence of increasing moisture, and then over the range of 60% moisture content, pressure drop rapidly increased to the saturated moisture condition while the pore space was filled with the water. On the other hand, during drying procedure, pressure drop decreased from the saturated condition to 40% moisture content. In the recommended range of 50 to 60% moisture content for composting operation, pressure drop in wetting procedure were lower than in drying procedure. For the enhancement of the air permeability in the composting matrix, the wetting procedure was proper than the drying procedure, and the optimum moisture content for the efficient composting operation was appeared to be near 60%.

Pseudo Dynamic Earthquake Response Tests on Steel Frames with Slit Plate Damper (슬릿형 댐퍼를 부착한 철골조 시스템의 가동적 지진응답실험)

  • Lee, Seung-Jae;Park, Jae-Seong;Oh, Sang-Hoon;Ryu, Hong-Sik
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.145-150
    • /
    • 2008
  • The purpose of this study is to propose damper system which is easy to design, which can ensure against risks, and to verify earthquake response characteristics. For this study, the pseudo dynamic earthquake response tests carried out for steel frames with two types of seismic and vibration control device. As a result, in case of using the slit plate damper as a vibration control device proposed by this study, the damper having higher stiffness than main-structure turned to the state of plasticity by little displacement has been proved to be able to absorb earthquake energy.

  • PDF

A study on laser welding characteristics of 1.5GPa grade boron alloyed steel with Al coating (1.5GPa급 알루미늄 코팅 강재의 용접 특성에 관한 연구)

  • Kang, Min-Jung;Kim, Cheol-Hee;Choi, Jin-Jang
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.29-29
    • /
    • 2010
  • 레이저 용접은 고밀도 에너지빔을 이용하는 용접방법으로 아크용접에 비해 빠른 용접과 깊은 용입이 가능하며, 낮은 열이력을 가지는 장점이 있다. 때문에 열에 의해 연화되는 고강도강의 용접에 큰 이점을 가지고 있다. 차체경량화 추세와 더불어 차량에 고강도강의 적용이 늘어나고 있는데 충돌시 차량 구조를 유지시켜주는 범퍼나 B-필러와 같은 부품에 적용되는 무도금 보론 합금강과 알루미늄 코팅 보론 합금강은 핫스템핑(Hot Stamping) 기술에 의해 제조된 소재로 약 1.5GPa의 인장강도를 가진다. 알루미늄 코팅 보론 합금강의 경우 제조공정과 이송 중 소재 표면산화에 의한 산화철발생 또는 표면 탈탄 현상을 방지하기 위해 알루미늄 코팅 처리를 하는데 이러한 코팅층이 용접시 용접부의 물성을 저하시키는 역할을 한다고 보고되어 있다. 본 연구에서는 1.5GPa급 무도금 보론 합금강과 알루미늄 코팅 보론 합금강을 대상으로 레이저 용접을 적용하여 용접부 특성을 파악하고자 하였다. 실험은 겹치기 형상으로 Fiber Laser, Disk Laser를 적용하여 진행하였으며 빔Size, 용접속도, Gap등을 변경하며 해당조건에서의 용입특성, 파단모드, 기계적특성 등을 알아보았다.

  • PDF