• 제목/요약/키워드: 비음성

검색결과 1,997건 처리시간 0.031초

고립단어 인식시스템에서 음성/비음성 식별에 관한 연구 (A Study on The Speech/Nonspeech Identification for Isolated Word Speech Recognition System)

  • 김치수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.242-245
    • /
    • 1998
  • 음성인식 시스템의 입력인 음성은 실제의 음성부분 외에도 주변잡음을 포함한 기침 소리, 문닫는 소리, 책장 넘기는 소리등과 같은 사용자에 의해서 발생될 수 있는 다양한 종류의 비음성을 포함할 수 있다. 특히 에너지가 큰 비음성을 포함하는 경우 기존의 끝점검출 알고리듬만으로는 음성부분만의 정확한 검출이 어렵게 되고 이는 음성인식 시스템의 성능을 저하시키는 주요 원인이 된다. 본 논문에서는 음성 발생시 일어날 수 있는 비음성들에 대해서 조사하고 이러한 비음성이 포함될 때 음성부분만의 정확한 검출을 가능하게 하는 알고리듬을 제시하였다. 사용된 파라미터로는 자기상관법에 의해 얻어지는 피치정보와 웨이브렛 영역에서의 에너지로써 비교적 낮은 신호대 잡음비에서도 음성부 검출을 가능하게 하였다.

  • PDF

음성의 유성음 특성을 이용한 음성/비음성 판별 방법 (A Robust Speech/Non-Speech Decision Using Voiced Characteristics of Speech)

  • 이성주;정호영;이윤근;김형순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.411-412
    • /
    • 2007
  • 자동음성인식 시스템을 이용하는 사용자 입장에서 보면 음성인식시스템을 사용하기 위하여 음성을 입력할 때마다 버튼을 눌러야 하는 Push-To-Talk (PTT) 방식은 여간 번거로운 일이 아닐 수 없다. 그리고 사용자가 원거리에서 음성을 입력하는 경우처럼 PTT 방식 자체가 용이하지 못 한 음성인식 응용분야에서는 Non-Push-To-Talk (NON-PTT) 방식의 필요성이 대두되게 된다. NON-PTT 방식의 음성 전처리를 위해서는 입력신호로부터 음성신호만을 구분해내는 음성판별기술이 필수적이다. 하지만 일상적인 잡음환경에서 음성신호만을 구분해내는 일은 매우 어려운 일이 아닐 수 없다. 본 논문에서는 일상적인 가정잡음환경에 강인한 음성판별방식을 제안한다. 여기서는 음성판별을 위해서 음성의 유성음 특성을 이용하였다. 즉, 일정구간 이상의 음성신호에는 일정구간이상의 유성음 구간이 존재하며 만약 잡음환경에서도 유성음 구간을 잘 검출할 수 있다면 이러한 음성의 특성을 이용하여 검출된 신호가 음성인지 아닌지를 판별할 수 있다. 이를 위하여 여기서는 가정잡음환경에서도 유성음을 잘 검출할 수 있도록 11 가지 유성음 특징들과 이를 이용한 음성판별방법을 제안하였다. 제안된 방법의 성능 평가를 위하여 음성의 끝점검출방법과 통합하여 음성/비음성 판별 테스트를 수행하였으며 테스트 수행결과 열악한 잡음환경에서 80%이상의 비음성을 거절하는 성능을 보였다.

새로운 음성/비음성 분류함수에 기반한 스펙트럼 차감법에 의한 차량잡음제거 (Car Noise Cancellation by Using Spectral Subtraction Method Based on a New Speech/nonspeech Classification Function)

  • 박영식;이준재;이응주;하영호
    • 한국통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.994-1003
    • /
    • 1994
  • 본 논문에서는 차량 잡음 환경하에서 하나의 마이크로폰 구조를 사용하여 스펙트럼 차감법을 이용한 잡음 제거 방법을 제안하였다. 변화하는 잡음에 의하여 손상된 음성신호에서 잡음의 성분을 제거하기 위하여 여러 상황에서의 차량 잡음을 분석하고 특성을 알아보았다. 음성/비음성의 분류와 잡음의 스펙트럼을 추정하기 위하여 잡음 분석을 바탕으로 음성/비음성 분류함수를 제안하였다. 이 분류함수에 의하여 적은 계산량으로 간단하게 정확한 음성/비음성의 분류가 가능하다. 또한 정확한 잡음의 스펙트럼 추정이 가능하다. 제안된 음성/비음성 분류함수에 의한 잡음의 스펙트럼 추정으로 인하여 왜곡이 거의 없는 깨끗한 음성신호를 추출할 수 있었다.

  • PDF

신경망 기반의 동적 파라미터들을 이용한 음성 경계 추출 (A Voice Boundary Detection Method Using Dynamic Parameters Based On Neural Network)

  • 마창수;김계영;최형일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.616-618
    • /
    • 2002
  • 본 논문에서는 음성인식 성능을 높이기 위한 기본적 단계인 음성과 비음성 부분의 경계를 추출하는 음성 경계 추출 방법을 제안한다. 음성경계 추출을 위한 특징들로는 시간영역 분할 파라미터인 ZCR, MA를 사용하고 주파수 영역 분할 파라미터로 주파수 대역 파워 에너지 (Frequency band power energy), 포만트 계수 (Formant coefficient)를 사용하였고 각 파라미터들을 이용하여 음성 경계를 결정할 때 경험에 의해 임계치를 결정하는 단점을 보안하기 위해서 신경망을 이용한다. 신경망의 가중치와 임계치들은 지도 학습을 통해 최적화 되고, 학습을 통해 구성된 망을 음성과 비음성의 경계치 구분에 사용한다.

  • PDF

이러닝 콘텐츠에서 비음성 사운드에 대한 학습자 인식 분석 (Learners' Perceptions toward Non-speech Sounds Designed in e-Learning Contents)

  • 김태현;나일주
    • 한국콘텐츠학회논문지
    • /
    • 제10권7호
    • /
    • pp.470-480
    • /
    • 2010
  • 이러닝 콘텐츠에는 시각자료와 함께 다양한 청각자료를 포함하고 있음에도 불구하고 그동안 학습자료에서 청각정보 설계에 대한 연구는 극히 제한적으로 이루어져 왔다. 청각정보의 한 유형인 비음성 사운드가 학습자들에게 피드백 제공 및 행위유도를 즉시적으로 할 수 있다는 장점을 감안한다면 비음성 사운드의 체계적 설계가 요구된다. 이에 본 논문은 다차원척도법을 활용하여 학습자들이 이러닝 콘텐츠에 설계된 비음성 사운드를 어떠한 방식으로 인식하고 있는지를 경험적으로 탐색하는 것을 목적으로 수행되었다. 한국교육학술정보원에서 제공하는 이러닝 콘텐츠에 설계된 비음성 사운드 중 대표성이 있는 11개의 비음성 사운드가 선정되었다. A 대학교 3학년 학생 66명을 대상으로 11개의 비음성 사운드들 간의 유사 정도에 대해 응답하도록 하였고 그 결과가 다차원 공간에 표현되었다. 연구결과, 학습자들은 비음성 사운드의 길이와 비음성 사운드가 전달하는 긍정적 혹은 부정적 분위기에 따라 비음성 사운드를 구분하여 인식하고 있는 것으로 나타났다.

Bicoherence와 tricoherence를 이용한 음성신호의 비선형성 검출 (Detection of nonlinearities in speech signal using bicoherence and tricoherence)

  • 김영인;임성빈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.595-598
    • /
    • 1998
  • 본 논문의 목적은 한국어 모음의 음성 신호에 대하여 2차 및 3차 비선형서의 존재에 대한 정량적인 분석을 수행함에 있다. 음성 신호의 비선형성을 분석하기 위하여 표본화한 음성 신호에 대하여 bicoherence 및 tricoherence를 측정하였다. 실험 결과에 의하면 한국어 모음의 음성 신호의 발생과정에 상당히 강한 2차 및 3차 비선형성이 존재함을 알수 있었다. 특히 음성신호의 3차 비선형성에 대한 연구는 처음 수행되는 것으로 음성 신호 분석에 있어서 매우 중요한 결과로 사료된다.

  • PDF

음성 구간 검출기의 실시간 적응화를 위한 특징 벡터의 차원 축소 방법 (Dimension Reduction Method of Feature Vector for Real-Time Adaptation of Voice Activity Detection)

  • 김평환;한학용;김창근;고시영;허강인
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 춘계학술발표대회 논문집 제23권 1호
    • /
    • pp.53-56
    • /
    • 2004
  • 본 논문은 잡음 환경하에서 특징 벡터의 차원 축소를 통한 음성 구간 검출에 관한 연구이다. 음성/비음성 분류는 통계적 모델을 이용한 분류-기반 방법을 사용한다. 검출기에서 실시간 적응화를 위해 우도-기반의 특징 벡터에 대한 차원 축소 방법을 제안한다. 이 방법은 음성/비음성 클래스에 대한 가우시안 확률 밀도 함수에 의한 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성/비음성 결정은 우도비 검증(Likelihood Ratio Test)의 방법을 이용하며, LDA(Linear Discriminant Analys)에 의한 축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법을 통하여 2차원으로 축소된 특징 벡터가 고차원에서의 결과와 대등함을 확인하였다.

  • PDF

STT 성능 향상을 위한 딥러닝 기반 발화 음성 분리학습 (Deep Learning-based Speech Voice Separation Training To Enhance STT Performance)

  • 김보경;양영준;황용해;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.851-853
    • /
    • 2022
  • 인공지능을 활용한 다양한 딥러닝 기술의 보급과 상용화로 오디오 음성 인식 분야에서도 음성 인식의 정확도를 높이기 위한 다양한 연구가 진행되고 있다. 최근 STT 를 위한 음성 인식 엔진은 딥러닝 기술을 기반으로 과거에 비해 높은 정확도를 보이고 있다. 하지만 예능 프로그램, 드라마, 스포츠 방송 등과 같이 비음성 신호와 음성 신호가 함께 녹음되는 오디오의 경우 음성 인식 정확도가 크게 낮아지는 문제가 발생한다. 이에 본 연구에서는 다양한 장르의 오디오를 음성과 음악을 분리하는 딥러닝 모델을 활용하여 음성 신호와 비음성 신호로 분리하는 방법을 제시하고, STT 결과를 분석하여 음성 인식의 정확도를 높이기 위한 연구 방향을 제시한다.

  • PDF

음성 비식별화 모델과 방송 음성 변조의 한국어 음성 비식별화 성능 비교 (Comparison of Korean Speech De-identification Performance of Speech De-identification Model and Broadcast Voice Modulation)

  • 김승민;박대얼;최대선
    • 스마트미디어저널
    • /
    • 제12권2호
    • /
    • pp.56-65
    • /
    • 2023
  • 뉴스와 취재 프로그램 같은 방송에서는 제보자의 신원 보호를 위해 음성을 변조한다. 음성 변조 방법으로 피치(pitch)를 조절하는 방법이 가장 많이 사용되는데, 이 방법은 피치를 재조절하는 방식으로 쉽게 원본 음성과 유사하게 음성 복원이 가능하다. 따라서 방송 음성 변조 방법은 화자의 신원 보호를 제대로 해줄 수 없고 보안상 취약하기 때문에 이를 대체하기 위한 새로운 음성 변조 방법이 필요하다. 본 논문에서는 Voice Privacy Challenge에서 비식별화 성능이 검증된 Lightweight 음성 비식별화 모델을 성능 비교 모델로 사용하여 피치 조절을 사용한 방송 음성변조 방법과 음성 비식별화 성능 비교 실험 및 평가를 진행한다. Lightweight 음성 비식별화 모델의 6가지 변조 방법 중 비식별화 성능이 좋은 3가지 변조 방법 McAdams, Resampling, Vocal Tract Length Normalization(VTLN)을 사용하였으며 한국어 음성에 대한 비식별화 성능을 비교하기 위해 휴먼 테스트와 EER(Equal Error Rate) 테스트를 진행하였다. 실험 결과로 휴먼 테스트와 EER 테스트 모두 VTLN 변조 방법이 방송 변조보다 더 높은 비식별화 성능을 보였다. 결과적으로 한국어 음성에 대해 Lightweight 모델의 변조 방법은 충분한 비식별화 성능을 가지고 있으며 보안상 취약한 방송 음성 변조를 대체할 수 있을 것이다.

통계적 비선형 차원축소기법에 기반한 잡음 환경에서의 음성구간검출 (Voice Activity Detection in Noisy Environment based on Statistical Nonlinear Dimension Reduction Techniques)

  • 한학용;이광석;고시영;허강인
    • 한국정보통신학회논문지
    • /
    • 제9권5호
    • /
    • pp.986-994
    • /
    • 2005
  • 본 논문은 잡음 환경하에서 적응 가능한 음성구간검출를 구축하기 위하여 우도기반의 음성 특징 파라미터의 비선형 차원축소 방법을 제안한다. 제안하는 차원축소 방법은 음성/비음성 클래스에 대한 가우시아 확률 밀도 함수의 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성구간검출기의 음성/비음성 결정은 우도비 검증(LRT)의 통계적 방법을 이용하며, 선형판별분석(LDA)에 의한 차원축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법으로 음성 특징 파라미터를 2차원으로 축소한 결과가 원래 특징백터의 차원에서의 결과와 대등한 성능을 확인하였다.