한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.242-245
/
1998
음성인식 시스템의 입력인 음성은 실제의 음성부분 외에도 주변잡음을 포함한 기침 소리, 문닫는 소리, 책장 넘기는 소리등과 같은 사용자에 의해서 발생될 수 있는 다양한 종류의 비음성을 포함할 수 있다. 특히 에너지가 큰 비음성을 포함하는 경우 기존의 끝점검출 알고리듬만으로는 음성부분만의 정확한 검출이 어렵게 되고 이는 음성인식 시스템의 성능을 저하시키는 주요 원인이 된다. 본 논문에서는 음성 발생시 일어날 수 있는 비음성들에 대해서 조사하고 이러한 비음성이 포함될 때 음성부분만의 정확한 검출을 가능하게 하는 알고리듬을 제시하였다. 사용된 파라미터로는 자기상관법에 의해 얻어지는 피치정보와 웨이브렛 영역에서의 에너지로써 비교적 낮은 신호대 잡음비에서도 음성부 검출을 가능하게 하였다.
자동음성인식 시스템을 이용하는 사용자 입장에서 보면 음성인식시스템을 사용하기 위하여 음성을 입력할 때마다 버튼을 눌러야 하는 Push-To-Talk (PTT) 방식은 여간 번거로운 일이 아닐 수 없다. 그리고 사용자가 원거리에서 음성을 입력하는 경우처럼 PTT 방식 자체가 용이하지 못 한 음성인식 응용분야에서는 Non-Push-To-Talk (NON-PTT) 방식의 필요성이 대두되게 된다. NON-PTT 방식의 음성 전처리를 위해서는 입력신호로부터 음성신호만을 구분해내는 음성판별기술이 필수적이다. 하지만 일상적인 잡음환경에서 음성신호만을 구분해내는 일은 매우 어려운 일이 아닐 수 없다. 본 논문에서는 일상적인 가정잡음환경에 강인한 음성판별방식을 제안한다. 여기서는 음성판별을 위해서 음성의 유성음 특성을 이용하였다. 즉, 일정구간 이상의 음성신호에는 일정구간이상의 유성음 구간이 존재하며 만약 잡음환경에서도 유성음 구간을 잘 검출할 수 있다면 이러한 음성의 특성을 이용하여 검출된 신호가 음성인지 아닌지를 판별할 수 있다. 이를 위하여 여기서는 가정잡음환경에서도 유성음을 잘 검출할 수 있도록 11 가지 유성음 특징들과 이를 이용한 음성판별방법을 제안하였다. 제안된 방법의 성능 평가를 위하여 음성의 끝점검출방법과 통합하여 음성/비음성 판별 테스트를 수행하였으며 테스트 수행결과 열악한 잡음환경에서 80%이상의 비음성을 거절하는 성능을 보였다.
본 논문에서는 차량 잡음 환경하에서 하나의 마이크로폰 구조를 사용하여 스펙트럼 차감법을 이용한 잡음 제거 방법을 제안하였다. 변화하는 잡음에 의하여 손상된 음성신호에서 잡음의 성분을 제거하기 위하여 여러 상황에서의 차량 잡음을 분석하고 특성을 알아보았다. 음성/비음성의 분류와 잡음의 스펙트럼을 추정하기 위하여 잡음 분석을 바탕으로 음성/비음성 분류함수를 제안하였다. 이 분류함수에 의하여 적은 계산량으로 간단하게 정확한 음성/비음성의 분류가 가능하다. 또한 정확한 잡음의 스펙트럼 추정이 가능하다. 제안된 음성/비음성 분류함수에 의한 잡음의 스펙트럼 추정으로 인하여 왜곡이 거의 없는 깨끗한 음성신호를 추출할 수 있었다.
본 논문에서는 음성인식 성능을 높이기 위한 기본적 단계인 음성과 비음성 부분의 경계를 추출하는 음성 경계 추출 방법을 제안한다. 음성경계 추출을 위한 특징들로는 시간영역 분할 파라미터인 ZCR, MA를 사용하고 주파수 영역 분할 파라미터로 주파수 대역 파워 에너지 (Frequency band power energy), 포만트 계수 (Formant coefficient)를 사용하였고 각 파라미터들을 이용하여 음성 경계를 결정할 때 경험에 의해 임계치를 결정하는 단점을 보안하기 위해서 신경망을 이용한다. 신경망의 가중치와 임계치들은 지도 학습을 통해 최적화 되고, 학습을 통해 구성된 망을 음성과 비음성의 경계치 구분에 사용한다.
이러닝 콘텐츠에는 시각자료와 함께 다양한 청각자료를 포함하고 있음에도 불구하고 그동안 학습자료에서 청각정보 설계에 대한 연구는 극히 제한적으로 이루어져 왔다. 청각정보의 한 유형인 비음성 사운드가 학습자들에게 피드백 제공 및 행위유도를 즉시적으로 할 수 있다는 장점을 감안한다면 비음성 사운드의 체계적 설계가 요구된다. 이에 본 논문은 다차원척도법을 활용하여 학습자들이 이러닝 콘텐츠에 설계된 비음성 사운드를 어떠한 방식으로 인식하고 있는지를 경험적으로 탐색하는 것을 목적으로 수행되었다. 한국교육학술정보원에서 제공하는 이러닝 콘텐츠에 설계된 비음성 사운드 중 대표성이 있는 11개의 비음성 사운드가 선정되었다. A 대학교 3학년 학생 66명을 대상으로 11개의 비음성 사운드들 간의 유사 정도에 대해 응답하도록 하였고 그 결과가 다차원 공간에 표현되었다. 연구결과, 학습자들은 비음성 사운드의 길이와 비음성 사운드가 전달하는 긍정적 혹은 부정적 분위기에 따라 비음성 사운드를 구분하여 인식하고 있는 것으로 나타났다.
본 논문의 목적은 한국어 모음의 음성 신호에 대하여 2차 및 3차 비선형서의 존재에 대한 정량적인 분석을 수행함에 있다. 음성 신호의 비선형성을 분석하기 위하여 표본화한 음성 신호에 대하여 bicoherence 및 tricoherence를 측정하였다. 실험 결과에 의하면 한국어 모음의 음성 신호의 발생과정에 상당히 강한 2차 및 3차 비선형성이 존재함을 알수 있었다. 특히 음성신호의 3차 비선형성에 대한 연구는 처음 수행되는 것으로 음성 신호 분석에 있어서 매우 중요한 결과로 사료된다.
본 논문은 잡음 환경하에서 특징 벡터의 차원 축소를 통한 음성 구간 검출에 관한 연구이다. 음성/비음성 분류는 통계적 모델을 이용한 분류-기반 방법을 사용한다. 검출기에서 실시간 적응화를 위해 우도-기반의 특징 벡터에 대한 차원 축소 방법을 제안한다. 이 방법은 음성/비음성 클래스에 대한 가우시안 확률 밀도 함수에 의한 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성/비음성 결정은 우도비 검증(Likelihood Ratio Test)의 방법을 이용하며, LDA(Linear Discriminant Analys)에 의한 축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법을 통하여 2차원으로 축소된 특징 벡터가 고차원에서의 결과와 대등함을 확인하였다.
인공지능을 활용한 다양한 딥러닝 기술의 보급과 상용화로 오디오 음성 인식 분야에서도 음성 인식의 정확도를 높이기 위한 다양한 연구가 진행되고 있다. 최근 STT 를 위한 음성 인식 엔진은 딥러닝 기술을 기반으로 과거에 비해 높은 정확도를 보이고 있다. 하지만 예능 프로그램, 드라마, 스포츠 방송 등과 같이 비음성 신호와 음성 신호가 함께 녹음되는 오디오의 경우 음성 인식 정확도가 크게 낮아지는 문제가 발생한다. 이에 본 연구에서는 다양한 장르의 오디오를 음성과 음악을 분리하는 딥러닝 모델을 활용하여 음성 신호와 비음성 신호로 분리하는 방법을 제시하고, STT 결과를 분석하여 음성 인식의 정확도를 높이기 위한 연구 방향을 제시한다.
뉴스와 취재 프로그램 같은 방송에서는 제보자의 신원 보호를 위해 음성을 변조한다. 음성 변조 방법으로 피치(pitch)를 조절하는 방법이 가장 많이 사용되는데, 이 방법은 피치를 재조절하는 방식으로 쉽게 원본 음성과 유사하게 음성 복원이 가능하다. 따라서 방송 음성 변조 방법은 화자의 신원 보호를 제대로 해줄 수 없고 보안상 취약하기 때문에 이를 대체하기 위한 새로운 음성 변조 방법이 필요하다. 본 논문에서는 Voice Privacy Challenge에서 비식별화 성능이 검증된 Lightweight 음성 비식별화 모델을 성능 비교 모델로 사용하여 피치 조절을 사용한 방송 음성변조 방법과 음성 비식별화 성능 비교 실험 및 평가를 진행한다. Lightweight 음성 비식별화 모델의 6가지 변조 방법 중 비식별화 성능이 좋은 3가지 변조 방법 McAdams, Resampling, Vocal Tract Length Normalization(VTLN)을 사용하였으며 한국어 음성에 대한 비식별화 성능을 비교하기 위해 휴먼 테스트와 EER(Equal Error Rate) 테스트를 진행하였다. 실험 결과로 휴먼 테스트와 EER 테스트 모두 VTLN 변조 방법이 방송 변조보다 더 높은 비식별화 성능을 보였다. 결과적으로 한국어 음성에 대해 Lightweight 모델의 변조 방법은 충분한 비식별화 성능을 가지고 있으며 보안상 취약한 방송 음성 변조를 대체할 수 있을 것이다.
본 논문은 잡음 환경하에서 적응 가능한 음성구간검출를 구축하기 위하여 우도기반의 음성 특징 파라미터의 비선형 차원축소 방법을 제안한다. 제안하는 차원축소 방법은 음성/비음성 클래스에 대한 가우시아 확률 밀도 함수의 비선형적 우도값을 새로운 특징으로 취하는 방법이다. 음성구간검출기의 음성/비음성 결정은 우도비 검증(LRT)의 통계적 방법을 이용하며, 선형판별분석(LDA)에 의한 차원축소 결과와 성능을 비교한다. 실험 결과 제안된 차원 축소 방법으로 음성 특징 파라미터를 2차원으로 축소한 결과가 원래 특징백터의 차원에서의 결과와 대등한 성능을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.