Journal of the Computational Structural Engineering Institute of Korea
/
v.27
no.6
/
pp.605-613
/
2014
Epistemic uncertainty, the lack of knowledge, is often more important than aleatory uncertainty, variability, in estimating reliability of a system. While the probability theory is widely used for modeling aleatory uncertainty, there is no dominant approach to model epistemic uncertainty. Different approaches have been developed to handle epistemic uncertainties using various theories, such as probability theory, fuzzy sets, evidence theory and possibility theory. However, since these methods are developed from different statistics theories, it is difficult to interpret the result from one method to the other. The goal of this paper is to compare different methods in handling epistemic uncertainty in the view point of calculating the probability of failure. In particular, four different methods are compared; the probability method, the combined distribution method, interval analysis method, and the evidence theory. Characteristics of individual methods are compared in the view point of reliability analysis.
Ship-handling simulation system has been used for maritime traffic safety assessment for harbor and fairway. There exist various environmental conditions under which ship may navigate along a fairway or in harbor. Due to the time and budget limitations, however, ship-handling simulations are usually carried out for very limited number of environmental conditions. In this paper, statistical method for effective and systematic determination of real time simulation conditions is suggested and applied to the maritime traffic safety assessment problems. In the empirical study, the principal component analysis method and the concept of empirical cumulative distribution function are suggested to estimate synthetic navigational difficulty and to select simulation conditions which would impose high difficulty on shiphandling.
This paper uses the Efficient Method of Moments(EMM) of Gallant and Tauchen to estimate continuous-time stochastic volatility diffusion model for the Korean Composite Stock Price Index, sampled daily over $1995\sim2002$. The estimates display non-normality of stock index return, leptokurtic distribution, and stochastic volatility. Funker, this study suggests that two factor stochastic volatility model will be more desirable than one factor stochastic volatility model to estimate daily Korean stock return and also suggests that the stochastic volatility diffusions should allow for Poisson jumps of time-varying intensity.
Proceedings of the Computational Structural Engineering Institute Conference
/
2009.04a
/
pp.101-104
/
2009
최적설계는 설계자가 요구하는 제한조건을 만족시키는 범위에서 목적함수가 최소가 되는 설계점을 찾는 방법이다. 그러나 기존의 최적설계는 불확실성의 영향을 고려하지 않아 최적해가 제한조건의 경계에 위치하고 이것은 모델링과정이나 가공 등으로 인한 오차에 대한 영향을 고려하지 않는 문제점이 있다. 신뢰성 기반 최적설계는 불확실성을 정량화하면서 신뢰도를 계산하는 신뢰도 해석과정과 최적설계과정을 포함한다. 일반적으로 신뢰성 해석은 크게 추출법, 급속 확률 적분법, 모멘트 기반 신뢰성해석이 있다. 가장 널리 사용되는 급속 확률 적분법 중 최대 손상 가능점(MPP) 방법은 많은 MPP점이 존재하는 경우 수치적 비용이 증가하는 문제점과 표준 정규분포 공간으로 변환하는 과정에서 제한조건의 비선형성을 증가시켜 큰 오차를 발생시키는 문제점이 있다. 본 논문에서는 RBDO를 수행하기에 앞서 선행되어야 할 신뢰성해석 방법으로 곱분해기법을 사용하였고 이로부터 민감도 정보를 유도하여 기울기 기반 최적화 알고리즘을 적용하였다.
본 논문은 열차제어시스템 유지보수업무의 최적화를 위한 정량적 주기산출방법에 관한 것으로, 특히 전장품과 같이 유지보수업무로 주로 교체업무가 선택되는 경우, 운영비용을 최적화하기 위한 교체주기를 정량적으로 산출하기위한 방법을 제시하고, 장치의 고장분포 데이터를 통해, 철도신호장치의 교체주기를 할당한다. 제시한 방법은 유지보수장치의 운영이력을 분석하여, 장치의 고장데이터를 바탕으로 고장분포를 확률적으로 모델링한 뒤, 정확한 LCC데이터가 적용될 때 새롭게 도입되는 장비 및 시스템의 유지보수업무주기를 할당이 가능하고, 이를 통해여 시스템의 운영안전을 보장하면서, 운용비용을 최적화 할 수 있다.
Korean Journal of Construction Engineering and Management
/
v.19
no.5
/
pp.3-9
/
2018
Although Life Cycle Cost (LCC) must be evaluated by experts, sometimes it may not allow a sufficient time for even the experienced LCC expert to make rational decisions. Therefore, it often ends with relatively comparing the final numbers. We have broken down 110 technical proposals that are actually bade and accepted for large construction projects, and then have analyzed the uncertainty of Maintenance and Energy (M&E) cost during building life cycle, which turns out be the most volatile factor in uncertainty of LCC. Also we suggest "Value Engineering Index (VEI)" - the reduced M&E cost that is normalized by the reduced first cost. It is analyzed that the most uncertain factors of the M&E cost include repair and replacement term differing from each project, duplicated repair and replacement, non-standard repair items, and site-specific energy cost. Eventually we propose a VEI population with a mean of 1.38 and a standard deviation of 1.19, which is obtained by individually and exclusively applying the uncertain factors of the M&E cost to the 35 standard sample of technical proposals. The LCC evaluators may be able to use the VEI population as the benchmark to select the technical proposal with the most reasonable LCC among many others in two suggested manners; the one is to deterministically calculate the probability of single VEIs, and the other is to stochastically calculate the probability of the VEIs where uncertainty is quantified.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.607-610
/
2021
When learning a model in supervised learning, input data and the label of the data are required. However, labeling is high cost task and if automated, there is no guarantee that the label will always be correct. In the case of supervised learning in such a noisy labels environment, the accuracy of the model increases at the initial stage of learning, but decrease significantly after a certain period of time. There are various methods to solve the noisy label problem. But in most cases, the probability predicted by the model is used as the pseudo label. So, we proposed a method to predict the true label more quickly by refining the probabilities predicted by the model. Result of experiments on the same environment and dataset, it was confirmed that the performance improved and converged faster. Through this, it can be applied to methods that use the probability distribution predicted by the model among existing studies. And it is possible to reduce the time required for learning because it can converge faster in the same environment.
The median encroachment accident model proposed in this paper is the first step to develop cost-effective criteria about installing facilities preventing traffic accidents by median encroachment. This model consists of expected annual number of median encroachment on roadway and conditional probability to collide with vehicles on opposite lane after encroachment. Expected encroachment number is related to traffic volume and quote from a study of Hutchinson & Kennedy(1966). The probability of vehicle collision is composed of assumed headway distribution of opposite directional vehicles (negative exponential distribution), driving time of encroaching vehicle and Gap & Gap acceptance model. By using expected accident number yielded from the presented model, it will be able to calculate the benefit of reduced accident and to analyze the cost of installing facilities. Therefore this will help develop cost-effective criteria of what, to install in the median.
Information theoretic learning (ITL) methods based on random symbols (RS) use a set of random symbols generated according to a target distribution and are designed nonparametrically to minimize the cost function of the Euclidian distance between the target distribution and the input distribution. One drawback of the learning method is that it can not utilize the input power statistics by employing a constant stepsize for updating the algorithm. In this paper, it is revealed that firstly, information potential input (IPI) plays a role of input in the cost function-derivative related with information potential output (IPO) and secondly, input itself does in the derivative related with information potential error (IPE). Based on these observations, it is proposed to normalize the step-size with the statistically varying power of the two different inputs, IPI and input itself. The proposed algorithm in an communication environment of impulsive noise and multipath fading shows that the performance of mean squared error (MSE) is lower by 4dB, and convergence speed is 2 times faster than the conventional methods without step-size normalization.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.288-288
/
2018
점착성 유사는 응집 현상을 겪는 유사로, 응집 현상(Flocculation Process)는 응집 과정(Aggregation Process)와 파괴 과정(Breakup Process)의 경쟁으로 이루어진다고 여겨진다. 응집 현상을 통해 점착성 유사는 물과 점착성을 띠는 작은 입자들의 덩어리인 플럭(Floc)을 형성하여 흐름 내에서는 대부분이 플럭의 형태로 이동한다. 점착성 유사의 응집 모형 중 하나인 플럭 성장모형(Floc Growth Model, FGM)은 상미분 방정식으로 시간에 따른 플럭의 크기를 계산하는 모형이다. 응집과 파괴의 평형 상태에서 평균 입경을 얻는다. 이러한 FGM은 낮은 수치 계산 비용으로 합리적인 계산 결과를 얻을 수 있으며, 유사 이동 모형 혹은 흐름 모형과의 결합이 수월한 장점을 가진다. 또한, 닫힌 계(Closed System)에서 질량이 보존되는 특징이 있다. 반면, 결정론적인 특성을 띠면서 특정 플럭 크기만을 계산하기 때문에 점착성 유사의 입도 분포에 대한 정보를 얻을 수 없다. 결정론적 특성을 띠는 FGM에 추계학적 방법을 적용함으로써 특정 확률 분포형을 가지는 플럭의 입도 분포를 얻을 수 있다. 본 연구에서는 기 개발된 추계학적 FGM과 유사 이동 모형의 결합을 통해 변화하는 유수동역학적 조건에서 플럭의 입도 분포를 산정하고자 한다. 이전의 많은 실험실 실험 결과들은 부유가 발생한 상태를 유지하면서 수행되는 것으로, 특정 난류 특성(난류 소산 매개변수)와 특정 유사 농도 조건에서의 입도 분포를 얻는다. 그러나 하구부 및 하천의 하류는 조류의 영향을 받는 구간으로, 점착성 유사의 특성을 분석하기 위해서는 변화하는 유수동역학적 특성에 관한 고려가 필수적이라 할 수 있다. 결합된 점착성 유사 입도 분포 모형은 플럭의 침강과 재부유를 고려할 수 있는 특징을 가지며, 실측자료와의 비교를 통해 입도 분포를 합리적으로 모의하는 것으로 나타난다. 본 연구에서 개발된 점착성 유사 입도 분포 모형은 나아가 비점착성 유사의 입도 분포 모형과의 결합을 통해 두 종류의 유사가 혼재하는 구간에서도 합리적인 입도분포와 유사의 이동을 모의할 수 있을 것으로 예측된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.