• Title/Summary/Keyword: 비선형 지반

Search Result 557, Processing Time 0.024 seconds

A Test on the Aseismic capacity of a Traditional Three-bay-straw-roof House(II): Soil Site Condition (전통 초가삼간 가옥의 내진성능 평가 실험 (II): 연약지반 조건)

  • 서정문;최인길;전영선;이종림;신재철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.21-28
    • /
    • 1997
  • The aseismic capacity of a traditional three-bay-straw-roof wooden house for soft soil site condition is quantitatively estimated. One 1/4 scale model was tested for the Imperial Valley Earthquake up to failure. The natural frequency of the wooden house measured in elastic range is 1.66 Hz and 1.76 Hz in the longitudinal and transversal direction, respectively. Damping ratio of the house measured in elastic range is 7%. The peak horizontal acceleration response of the house was reduced compared with input motion due to the nonlinear inelastic characteristics of the wooden frame. The horizontal displacement response was significantly increased as the level of input motion was increased. The model was collapsed at 0.25g due to the low frequency contents of the input motion. The results of nonlinear seismic analysis were compared with the test results.

  • PDF

Dynamic Properties of Silty Sands at High Amplitude (Basic Properties) (Silt질 모래의 고변형률 진동특성(기본성질))

  • 송정락;김수일
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.27-34
    • /
    • 1988
  • Soils behave non-linearly at high strain. This study investigated the non-linear behavior of silty sands (Mixture of Ottawa Sand and Quartz Powder) by resonant column tests. The results were ·compared with Ramberg-Osgood's non-linear equation. From the tests, it was shown that the change of shear modulus and damping ratio was more sharp at low fine content, high void ratio and low confining pressure. It was also found that famberg-Osgood parameter, R was approximately 2.0, however the range of C varied from 200 to 3200.

  • PDF

Application and Verification of Coupled Analysis of Piled Piers (교량 말뚝기초 해석기법의 적용성 분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.123-134
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method (YSGroup) was developed considering nonlinear pile head stiffness matrices and compared with other analytical methods (elastic displacement method, Group 6.0 and FBPier 3.0). In this method, a pile cap was modelled by four-node flat shell element, a pier was modelled using 3 dimensional beam element, and individual piles were modelled as beam-column elements. Through the comparative studies on a piled pie. subjected to lateral loads in linear soil, it was found that present method (YSGroup), elastic displacement method and Group 6.0 gave similar results of lateral pile head displacement, but FBPier 3.0 was estimated to show somewhat larger displacements than those from the three methods. Displacements of superstructure (pier), including nonlinear soil behavior, could be estimated by present method (YSGroup) and FBPier 3.0 because these two methods modelled the superstructure directly by finite element techniques. It was found that pile groups in pinned pile head condition had a tendency to cause excessive rotation of the pile cap.

Cyclic Hardening and Degradation Effects on Site Response during an Earthquake (지진시 지반의 반복경화/연화 현상에 의한 부지응답 특성 영향 연구)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.65-71
    • /
    • 2008
  • A one-dimensional site response analysis program (KODSAP) was developed using cyclic soil behavior model by using the modified parallel IWAN model. The model is able to predict the cyclic hardening and degradation of soil through the adjustment of the internal slip stresses of its elements beyond the cyclic threshold, and satisfies Bauschinger's effect and the Masing rule in terms of its own behavior characteristics. The program (KODSAP) used the direct integration method in the time domain. The elasticity of the base rock was considered as a viscous damper boundary condition. The effects of cyclic hardening or degradation of soil on site response analysis were evaluated through parametric studies. Three types of analyses were performed to compare the effect of analysis and cyclic parameter on site response. The first type was equivalent linear analysis, the second was nonlinear analysis, and a third was nonlinear analysis using the cyclic hardening or degradation model.

Rail-Stress of High-Speed Railway Bridges using tong Rails and subjected to Spatial Variation of Ground Motion Excitations (지반운동을 공간변화를 고려한 고속철도 장대레일의 응력해석)

  • Ki-Jun Kwon;Yong-Gil Kim
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.132-138
    • /
    • 2003
  • The use of long rails in high-speed railway bridges causes additional stresses due to nonlinear behaviours between the rail and bridge decks in the neighbourhood of the deck joints. In the seismic response analysis of high-speed railway bridges, since structural response is highly sensitive to properties of the ground motion, spatial variation of the ground excitation affects responses of the bridges, which in turn affect stresses in the rails. In addition, it is shown that high-speed trains need very long distances to stop when braking under seismic occurrence corresponding to operational earthquake performance level so that verification of the safe stoppage of the train is also required. In view of such additional stresses due to long rails, sensibility of structural response to the properties of the ground motion and braking distance needed by the train to stop safely, this paper proposes and establishes a time domain nonlinear dynamic analysis method that accounts for braking loads, spatial variation of the ground motion and material nonlinearities of rails to analyze long rail stresses in high-speed railway bridges subjected to seismic event. The accuracy of the proposed method is demonstrated through an application on a typical site of the Korean high-speed railway.

Nonlinearly Distributed Active Earth Pressure on n Translating Rigid Retaining Wall : I. Formulation (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : I. 정식화)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.181-189
    • /
    • 2003
  • The active earth pressure against a rigid retaining wall has been generally calculated using either Rankine's or Coulomb's formulation. Both assume that the distribution of active earth pressure exerted against the wall is triangular. However, many experimental results show that the distribution of the active earth pressure on a rigid rough wall is nonlinear. These results do not agree with the assumption used in both Rankine's and Coulomb's theories. The nonlinearity of the active earth pressure distribution results from arching effects in the backfill. Several researchers have attempted to estimate the active earth pressure on a rigid retaining wall, considering arching effect in the backfill. Their equations, however, have some limitations. In this paper, a new formulation for calculating the active earth pressure on a rough rigid retaining wall undergoing horizontal translation is proposed. It takes into account the arching effects that occur in the backfill.

Deformational Characteristics of Cohesive Soils Using Resonant Column / Torsional Shear Testing Equipment (공진주/비틂 전단(RC/TS)시험기를 이용한 점성토의 변형특성)

  • 김동수
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.113-126
    • /
    • 1995
  • Both resonant column (RC) and torsional shear(TS) tests were performed at small to intermediate strain levels to investigate deformational characteristics of cohesive soils. The effects of variables such as strain amplitude, loading frequency, and number of loading cycles were studied. Plasticity index was found to be an important variables in evaluating these effects. Soils tested include undisturbed silts and clays and compacted subgrade soils. At small strains below the elastic threshold, shear modulus is independent of number of loading cycles and strain amplitude. Small strain material damping exists wi th ranges be tween 1.1% and 1.7% for 75 tests. The elastic threshold strain increases as confining pressure and plasticity index increases. Above the cyclic threshold strain, the modulus of cohesive soil decreases with increasing number of cycles while damping ratio is almost independent of number of load cycles. Moduli and damping ratios of cohesive soils obtanined by RC test are higher than those from 75 test because of the frequency effect. Shear modulus of cohesive soil increases linearly as a function of the logarithm of loading frequency.

  • PDF

EVALUATION OF NONLINEAR FINITE ELEMENT COMPUTER PROGRAM SMAP-S2 (비선형 유한요소 컴퓨터 프로그램 SMAP-S2의 평가)

  • 김광진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.271-288
    • /
    • 1991
  • SMAP-S2 is an advanced too-dimensional , static finite element computer program developed for the geometric and material nonlinear structure-medium interaction analysis. The program has specific applications for modeling geomechanical problems associated with multi-staged excavation or embankment. Theoretical formulations and computational algorithms are presented along with the description of elasto-plastic material models. Nonlinear features of the code are verified by comparing with known solutions or experimental test results. Capabilities of per- and post-processing programs are discussed.

  • PDF

A Study on Soil Reaction of Pile Fonndation Subjected to Dynamic Loading (동적 하중을 받는 말뚝기호의 지반반력에 관한 연구)

  • Kim, Young-Su;Lee, Song;Paik, Young-Shik
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.43-52
    • /
    • 1990
  • To investigate the effects of soil properties of the soft zone around a pile subjected 1,o the horizontal harmonic vibration, the parametric study is perfomed. The determination of the soil reaction or stiffness of the Winkler springs representing the soil around a pile is performed by dividing the soil profile into a number of homogeneous obtained from this study are as follows : 1) The real and imaginary parts of the stiffness show clear variations for the different shear modulus ratios, poisson's ratios, and distance retios to outer boundary as the dimensionless frequency increases. The differences are more pronounced for the imaginary part of the stiffness. 2) The stiffness of soil shows clear decrease. The real parts of the stiffness show larger as the frequency increases. On the other hand, the imaginary parts of the stiffness show smaller.

  • PDF

Optimization Technique for Parameter Estimation used in 2-Dimensional Modelling of Nonlinear Consolidation Analysis of Soft Deposits (2차원 모델화된 연약지반의 비선형 압밀해석시 이용되는 모델변수 추정을 위한 최적화기법)

  • 김윤태;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The predicted consolidation behavior of in-situ soft clay is quite different from the meas ureal one mainly due to the approximate numerical modelling techniques as well as the uncertainties involved in soil properties and geological configurations. In order to improve the prediction, this paper takes the following pinto consideration : an optimization technique should be adopted for characterizing the in-situ properties from measurements and also an equivalent and efficient model be considered to incorporate the actual 3-D effects. The soil parameters used be the modified Camflay model, which have an effect on the process of consolidation, were back-analyzed by BFGS scheme on the basis of settlements and pore pressures measured in real sites. The optimization technique was implemented in a general consolidation analysis program SPINED. By using the program, one may be able to appropriately analyze the timetependent consolidation behavior of soft deposits.

  • PDF