• Title/Summary/Keyword: 비선형요구내력스펙트럼

Search Result 5, Processing Time 0.02 seconds

A New Methodology of Earthquake Damage Evaluation for R/C Buildings Based on Non-linear Required Strength Spectrum - Part I. Concept of Earthquake Damage Evaluation - (비선형요구내력스펙트럼을 이용한 철근콘크리트건물의 지진손상도 평가법 - Part I. 지진손상도 평가법 개념 -)

  • Lee, Kang-Seok;Wi, Jeong-Du;Jeon, Kyeong-Joo;Choi, Yun-Cheul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.111-112
    • /
    • 2010
  • This study proposes a new methodology of earthquake damage evaluation for R/C Buildings combined with shear and flexural failure systems, based on non-linear required strength spectrum. Part I shows a concept of methodology of earthquake damage evaluation, which is estimated on the basis of system ductility, non-linear required strength spectrum and remaining seismic capacity ratio.

  • PDF

A New Methodology of Earthquake Damage Evaluation for R/C Buildings Based on Non-linear Required Strength Spectrum - Part II. A example of Earthquake Damage Evaluation - (비선형요구내력스펙트럼을 이용한 철근콘크리트건물의 지진손상도 평가법 - Part II. 지진손상도 평가법 평가사례 -)

  • Wi, Jeong-Du;Jeon, Kyeong-Joo;Lee, Kang-Seok;Choi, Yun-Cheul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.113-114
    • /
    • 2010
  • In this study, the earthquake damage evaluation of a R/C frame building is carried out based on the method proposed in Part I. Using the proposed method, the earthquake damage of building system based on non-linear required strength spectrum can be effectively evaluated without using the detailed seismic evaluation methods, including non-linear dynamic analyses, capacity spectrum method, etc.

  • PDF

A New Methodology for Seismic Capacity Evaluation of Low-rise R/C Buildings (비선형요구내력스펙트럼을 이용한 저층 R/C 건물의 내진성능 평가법)

  • Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.106-115
    • /
    • 2011
  • This study proposed a new methodology for seismic capacity evaluation of low-rise reinforced concrete (RC) buildings based on non-linear required spectrum. In order to verify the reliability of the proposed method, relationships between results obtained using the proposed method and the non-linear dynamic analyses were investigated. Compared with the seismic protection index (Es=0.6) defined in the Japanese Standard, the applicability of the method was also estimated. Research results indicate that the method proposed in this study compares reasonably well with the detailed evaluation methods. Using the seismic evaluation method developed in this study, the seismic capacity category and earthquake damage degree of low-rise RC buildings corresponding to a specific earthquake level can be effectively estimated.

Required Strength Spectrum of Low-Rise Reinforced Concrete Shear Wall Buildings with Pilotis (필로티 구조를 가진 저층 철근콘크리트 전단벽식 건물의 요구내력 스펙트럼)

  • Lee, Kang-Seok;Oh, Jae-Keun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.61-69
    • /
    • 2007
  • The main purpose of this study is to provide a basic information for the seismic capacity evaluation and the seismic design of low-rise reinforced concrete (RC) shear wall buildings, which are comprised of a pilotis in the first story. In this study, relationships between strengths and ductilities of each story of RC buildings with pilotis are investigated based on the nonlinear seismic response analysis. The characteristics of low-rise RC buildings with pilotis are assumed as the double degree of freedom structural systems. In order to simulate these systems, the pilotis is idealized as a degrading trilinear hysteretic model that fails in flexure and the upper story of shear wall system is idealized as a origin-oriented hysteretic model that fails in shear, respectively. Stiffness properties of both models are varied in terms of story shear coefficients and structures are subjected to various ground motion components. By analyzing these systems, interaction curves of required strengths for various levels of ductility factors are finally derived for practical purposes. The result indicates that the required strength levels derived can be used as a basic information for seismic evaluation and design criteria of low-rise reinforced concrete shear wall buildings having pilotis structure.

Demand Strength Spectrums of Low-Rise Reinforced Concrete Buildings Consisted of Extremely Brittle, Shear and Flexural Failure Systems (극취성·전단·휨파괴형 수평저항시스템으로 구성된 저층 철근콘크리트 건물의 요구 내력 스펙트럼)

  • Lee, Kang-Seok;Kim, Jeong-Hee;Oh, Jae-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.529-537
    • /
    • 2007
  • The purpose of this study is to discuss how strength and ductility of each system in low-rise reinforced concrete buildings composed of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system, which is based on nonlinear seismic response analyses of single-degree-of-freedom structural systems. In order to simulate the triple lateral-load resisting system, structures are idealized as a parallel combination of two modified origin-oriented hysteretic models and a degrading trilinear hysteretic model that fail primarily in extremely brittle, shear and flexure, respectively. Stiffness properties of three models are varied in terms of story shear coefficients, and structures are subjected to various ground motion components. By analyzing these systems, interaction curves of demand strengths of the triple system for various levels of ductility factors are finally derived for practical purposes. The result indicates that demand strength levels derived can be used as a basic information for seismic evaluation and design criteria of low-rise reinforced concrete buildings having the triple lateral-load resisting system.