• Title/Summary/Keyword: 비선형완경사방정식

Search Result 22, Processing Time 0.03 seconds

Numerical Simulation of Surge - Wave Combined Inundation at Mokpo North Harbor (목포 북항에서 풍파에 의한 해수범람의 수치 모의)

  • Lee, Jung Lyul;Kang, Ju Whan;Yoon, Jong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.307-313
    • /
    • 2008
  • Tidal amplification by construction of sea-dike and sea-walls had been detected not only near Mokpo North Harbor but also at Chungkye Bay which is connected with Mokpo North Harbor by a narrow channel. This brings about increase of tidal flat area and in particular increase of runup height and inundation area during storms. In this study, a simulation process is composed of wind wave generation model for large area and wave inundation model for small coastal zone. The nonlinear version of mild-slope equation is modified for simulating wind-driven surge and wave inundation at a small area. The models are applied to Chungkye Bay, and possible inundation features at Mokpo North Harbor are investigated.

Inhomogeneous Helmholtz equation for Water Waves on Variable Depth (비균질 Helmholtz 방정식을 이용한 변동 수심에서의 파랑변형)

  • Kim, Hyo-Seob;Jang, Chang-Hwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.174-180
    • /
    • 2010
  • The inhomogeneous Helmholtz equation is introduced for variable water depth and potential function and separation of variables are introduced for the derivation. Only harmonic wave motions are considered. The governing equation composed of the potential function for irrotational flow is directly applied to the still water level, and the inhomogeneous Helmholtz equation for variable water depth is obtained. By introducing the wave amplitude and wave phase gradient the governing equation with complex potential function is transformed into two equations of real variables. The transformed equations are the first and second-order ordinary differential equations, respectively, and can be solved in a forward marching manner when proper boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient at a side boundary. Simple spatially-centered finite difference numerical schemes are adopted to solve the present set of equations. The equation set is applied to two test cases, Booij’ inclined plane slope profile, and Bragg’ wavy bed profile. The present equations set is satisfactorily verified against other theories including the full linear equation, Massel's modified mild-slope equation, and Berkhoff's mild-slope equation etc.

EVP Models for Wave Transformation in Regions of Slowly Varying Depth (EVP방법(方法)을 이용한 완경사(緩傾斜) 영역(領域)에서의 파랑변형(波浪變形) 수치모형(數値模型))

  • Oh, Seong Taek;Lee, Kil Seong;Lee, Chul Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.231-238
    • /
    • 1992
  • Error vector propagation method is applied to the elliptic mild slope equation in order to reduce the computation time. Results from the elliptic, parabolic, and hyperbolic models are compared with experimental data for an elliptic shoal. Also, results of the elliptic and hyperbolic models are compared with experimental data for a detached breakwater. As a result of applying this model. it is concluded that the present model satisfactorily reduces the computation time compared with other numerical models. In the accuracy of solutions, there are some oscillations but the trend compares well with other models.

  • PDF

Diffraction Effects of Parabolic Mild-Slope Equations in the Shadow Zone behind a Detached Breakwater (이안제 배후 차폐역에서 포물선형 완경사방정식의 회절효과)

  • 김인철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.297-304
    • /
    • 1996
  • The purpose of this study is to observe the applicability of parabolic mild-slope equations allowing relatively large angles of wave propagation based on the use of a Pade approximant or minimax approximation and also the applicability of the models with nonlinearity of diffracted waves in the shadow zone behind coastal structures. To accomplish these objectives, numerical solutions are obtained from the above parabolic models and are compared with the results from Watanabe and Maruyama's(1984) hydraulic model test on the wave field with an impermeable detached breakwater. From this study, it is found that computed wave heights increase for the nonlinear results in comparison to the linear results due to the increased diffraction effect across the geometric shadow boundary. The model with a larger aperture with respect to the principal direction was found to spread laterally to a much greater degree where spreading angle (diffraction effect) is relatively large. which causes a distortion in the overall results due to the error accumulated by the approximation of wave length.

  • PDF

Effects of Stem Wave on the Vertical Breakwater (해안구조물 전면의 Stem Wave 특성에 관한 연구)

  • 박효봉;윤한삼;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.138-143
    • /
    • 2001
  • Based on mild slope equation and parabolic approximation the forward diffraction of monochromatic waves by a straight breakwater are studied numerically. The characteristics and effects of stem wave along breakwater and the relations between the stem wave and incident wave angle are discussed.

  • PDF

Derivation of Nonlinear Mild-Slope Equation and Numerical Simulation (비선형 완경사 방정식의 유도 및 수치모의)

  • Lee, Jung-Lyul;Park, Chan-Sung
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.103-112
    • /
    • 2000
  • Early efforts to model wave transformation from offshore to inshore were based on the ray theory which accounts for wave refraction due to changes in bathymetry and the diffraction effects were ignored. Prediction of nearshore waves with the combined effects of refraction and diffraction as well as reflection has taken a new dimension with the use of the mild-slope equation and the Boussinesq equation. (omitted)

  • PDF

The Analysis of Wave Height Distribution in the Jumunjin Fishery Port with Seawater-Exchange Breakwater (해수교환방파제가 설치된 주문진항에서의 파고분포 해석)

  • Kim, Nam-Hyeong;Yun, Hyeon-Cheol;Koo, Bon-Soo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • When estimating the calmness in a harbor, it is important that diffraction and reflection of irregular waves should be exactly calculated. The basic equation of the numerical model in this study was used Mild-slope equation, which has the advantage of which non-linearity with great influence for the wave behavior can be considered, and a triangular mesh was generated by using finite element method. So as to verify the nonlinear effects, the results of the numerical model developed in this study are compared with the experimental and numerical results by other researchers. As a result, it is shown that the results in case of considering nonlinear wave are more exact for wave analysis than in case of not considering nonlinear wave. In order to apply this model, wave height distributions in Jumunjin fishery port installed a seawater-exchange breakwater are computed. From the results of this numerical analysis, when abnormal waves are intruded through the seawater-exchange breakwater, the results of the wave height distributions in the harbor are highly presented. Therefore, in order to get wave height low in the harbor, it is considered that the facility with the ability to protect the inflow of abnormal waves is needed.

Simulation of Wave-Induced Currents by Nonlinear Mild-Slope Equation and Comparison with PIV Measurements (비선형 완경사 방정식에 의한 연안류의 모의 및 PIV 관측결과와의 비교)

  • Lee, Jung-Lyul;Park, Chan-Sung;Han, Sang-Woo
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.140-148
    • /
    • 2000
  • The nearshore currents are required for the preservation of coastal areas and the more pressing environmental problems since they cause sediments to be in suspension and transport the sediments into tranquil regions. Numerical models are often used to calculate current patterns formed around man-made or naturally caused changes around the coastal area. (omitted)

  • PDF

Application of Boussinesq Equation Model for the Breaking Wave Behavior around Underwater Shoals (수중 천퇴에서의 쇄파거동 예측을 위한 Boussinesq 방정식 모델의 적용)

  • Chun, In-Sik;Kim, Gui-Dong;Sim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-165
    • /
    • 2006
  • In the present study, a numerical model using Boussinesq equation is set up to predict the interacted equilibrium between waves and their induced currents in the occurrence of breaking waves over an underwater shoal, and the numerical results are compared with results of existing hydraulic experiments. A sensitivity analysis has been done to find out appropriate values of breaking wave parameters with the result (regular wave case) of Vincent and Briggs (1989)’ experiment. Then the numerical model is applied to the irregular wave cases of the experiment and the hydraulic model test of Ieodo which is a natural undersea shoal. The results show that a strong current forms in the wave direction at the downstream side of the shoals, causing the attenuation of wave heights there. The calculated wave heights generally show a similar pattern with the measured data.

Application based on the strictly combined method of BEM and CADMAS-SURF (BEM-CADMAS-SURF 결합해석법에 기초한 수치조파수조의 응용)

  • Kim, Sang-Ho;Yamashiro, Masaru;Yoshida, Akinori;Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • The hybrid numerical model is developed by combining BEM that can calculate the wave motion rapidly under the potential theory and CADMAS-SURF that solves Navier-Stokes equations for the free surface variation near the structure, In the hybrid model the calculation of wave motion in a wide field of wave reflection for deep water area is conducted by BEM but for shallow water area by CADMAS-SURF. Especially the hybrid model can calculate random wave motions for long term period more rapidly with almost similar accuracy than the calculation of wave motion which was carried out by CADMAS-SURF only. In this study the coupling model was applied to the calculation of the strong nonlinear wave motion such as wave runup and overtopping at the coastal structure on the mild-slope bottom and the results of numerical model were compared with the Toyosima's experiments of regular wave runup and Goda's design diagram of ramdom wave overtopping, respectively.