In this paper, we compare several methods to approximate option prices: Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method using normal inverse gaussian (NIG) distribution, and an asymptotic method using nonlinear regression. We used two different types of approximation. The first (called the RNM method) approximates the risk neutral probability density function of the log return of the underlying asset and computes the option price. The second (called the OPTIM method) finds the approximate option pricing formula and then estimates parameters to compute the option price. For simulation experiments, we generated underlying asset data from the Heston model and NIG model, a well-known stochastic volatility model and a well-known Levy model, respectively. We also applied the above approximating methods to the KOSPI200 call option price as a real data application. We then found that the OPTIM method shows better performance on average than the RNM method. Among the OPTIM, A-type Gram-Charlier expansion and the asymptotic method that uses nonlinear regression showed relatively better performance; in addition, among RNM, the method of using NIG distribution was relatively better than others.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.25
no.12
/
pp.888-894
/
2015
A new method for the simulation of the vehicle's interior road noise is proposed in the present study. The road noise model can synthesize road noise of a vehicle for varying driving speed within a range. In the proposed method, interior road noise is considered as a stochastic time-series, and is modeled by a nonstationary parametric model via two steps. First, each interior road noise signal, obtained from constant speed driving tests performed within a range of speed, is modeled as an autoregressive model whose parameters are estimated by using a standard method. Finally, the parameters obtained for different driving speeds are interpolated based on the varying driving speed to yield a time-varying autoregressive model. To model a full band road noise, audible frequency range is divided into an octave band using a wavelet filter bank, and the road noise in each octave band is modeled.
The aim of this paper is to find out the nature of causality between the two ocean freights employing the Granger method. That is because the Baltic freights tend to move very closely and seem to be behave like one time series. The Granger causality test, however, is very sensitive to the number of lags used in the analysis. This means that one has to be very careful in implementing the Granger causality test. This paper, hence, uses more rather than the lags which the Akaike Information Criterion and the Schwarz Information Criterion suggest. This study shows that BPI does not "Granger-cause" BCI and BSI, but BCI and BSI Granger-cause BPI. I also discover that BHSI does not "Granger-cause" BPI and BSI, but BPI and BSI Granger-cause BHSI. I, hence, model and estimate the ocean freight function and show that the Baltic ocean freight market is inefficient and the biased estimator of the other freight.
Communications for Statistical Applications and Methods
/
v.16
no.4
/
pp.579-586
/
2009
We have used multifactor dimensionality reduction(MDR) method to study interaction effect of statistical model in general. But MDR method cannot be applied in all cases. It can be applied to the only case-control data. So, two methods are suggested E-MDR and D-MDR method using regression tree algorithm and dummy variables. We applied the methods on the identify interaction effects of single nucleotide polymorphisms(SNPs) responsible for longissimus mulcle dorsi area(LMA), carcass cold weight(CWT) and average daily gain(ADG) in a Hanwoo beef cattle population. Finally, we compare the results using permutation test.
Journal of the Korean Data and Information Science Society
/
v.21
no.6
/
pp.1271-1280
/
2010
We have used multifactor dimensionality reduction (MDR) method to study genegene interaction effect of statistical model in general. But, MDR method could not be applied in the continuous data. In this paper, continuous-type data by the support vector machine (SVM) algorithm are proposed to the MDR method which provides an introduction to the technique. Also we apply the method on the identify major interaction effects of single nucleotide polymorphisms (SNPs) responsible for economic traits in a Korean cattle population.
Journal of the Korean Data and Information Science Society
/
v.23
no.3
/
pp.467-474
/
2012
Human diseases and livestock economic traits are not typically the result of variation of a single genetic locus, but are rather the result of interplay between interactions among multiple genes and a variety of environmental exposures. We have used linear regression model for adjusted environmental effects and multifactor dimensionality reduction (MDR) method to identify gene-gene interaction effect of statistical model in general. Of course, we use 5 SNPs (single uncleotide polymorphism) which were studied recently by Oh et al. (2011). We apply the MDR (multifactor demensionality reduction) method on the identify major interaction effects of single nucleotide polymorphisms responsible for economic traits in a Korean cattle population.
Mature weight (A) and rate of maturing (k) estimated by nonlinear regression were studied to determine the optimum age range over which the estimate of growth curve parameters can be estimated. The weight-age data from 1,133 Hanwoo bulls at Hanwoo Improvement Center of N.A.C.F. were used to fit the growth curve using Gompertz model. All available weight data from birth to the specific age of months were used for the estimation of parameters: the six specific ages used were 12, 14, 16, 18, 20 22 and 24 months of age. The mean estimates of mature weight (A) were 966.5, 1,255.9, 1,126.2, 916.5, 842.2, 780.9 and 767.0kg for ages 12 through 24 months, respectively. The mean estimates of mature weight (A) to 22 and 24 months of age were not different from each other. However, they were different from the estimates based on the data to other ages. Mean estimates of rate of maturing (k) were 3.362, 3.595, 3.536, 3.421, 3.403, 3.409 and 3.411 for ages 12 through 24 months, respectively. The mean estimates of maturing rate (k) for ages 18 through 24 months of age were not significantly different from each other. However, they were different from the estimates based on the data to other ages. Correlations among estimates of A at various ages showed the highest value of 0.93 between 22 and 24 months. Correlations among estimates of k at various ages were highest ranging from 0.91 to 0.99 among 18 to 24 months. The correlations between A and k were positive and tended to decrease with the increase of the age from 0.84 for the age of 12 months to 0.10 for the age of 24 months. Thus, the estimates of growth curve parameters, A and k, suitable for genetic studies can be derived from accumulated Hanwoo bulls after 22 months of age.
선도환의 가격을 결정하는 접근방법에는 2차자산(derivative assets)이라는 선도계약의 기본특성에 기초한 재정거래(arbitrage)에 의한 방법이 가장 많이 이용되고 있다. 재정거래방식에는 선도환과 현물외환가격간의 상호관련성에 의하여 선도환가격을 이자율평가설(covered interest rate parity : CIRP), 즉 현물가격과 양국간의 이자율차이의 합으로 표시하고 있다. 특히 현물가격과 이자율은 모두 현재시점에서 의사결정자에게 알려져 있기때문에 선도환가격은 확실성하에서 결정되어 미래에 대한 예측이나 투자자의 위험회피도와는 관계없이 결정된다는 것이 특징이다. 이자율평가설에 관한 많은 실증연구는 거래 비용을 고려한 경우 현실적으로 적절하다고 보고 있다(Frenkel and Levich ; 1975, 1977). 다른 방법으로는 선도환의 미래예측기능에만 촛점을 맞추어 가격결정을 하는 투기, 예측접근방법(speculative efficiency approach : 이하에서는 SEA라 함)이 있다. 이 방법 중에서 가장 단순한 형태로 표시된 가설, 즉 '선도환가격은 미래기대현물가격과 같다'는 가설은 대부분의 실증분석에서 기각되고 있다. 이에 따라 SEA에서는 선도환가격이 미래에 대한 기대치뿐만 아니라 위험프리미엄까지 함께 포함하고 있다는 새로운 가설을 설정하고 이에 대한 실증분석을 진행한다. 이 가설은 이론적 모형에서 출발한 것이 아니기 때문에, 특히 기대치와 위험프레미엄 모두가 측정 불가능하다는 점으로 인하여 실증분석상 많은 어려움을 겪게 된다. 이러한 어려움을 피하기 위하여 많은 연구에서는 이자율평가설을 이용하여 선도환가격에 포함된 위험프레미엄에 대해 추론 내지 그 행태를 설명하려고 한다. 이자율평가설을 이용하여 분석모형을 설정하고 실증분석을 하는 것은 몇가지 근본적인 문제점을 내포하고 있다. 먼저, 앞서 지적한 바와 같이 이자율평가설을 가정한다는 것은 SEA에서 주된 관심이 되는 미래예측이나 위험프레미엄과는 관계없이 선도가격이 결정 된다는 것을 의미한다. 따라서 이자율평가설을 가정하여 설정된 분석모형은 선도환시장의 효율성이나 균형가격결정에 대한 시사점을 제공할 수 없다는 것을 의미한다. 즉, 가정한 시장효율성을 실증분석을 통하여 다시 검증하려는 것과 같다. 이러한 개념적 차원에서의 문제점 이외에도 실증분석에서의 추정상의 문제점 또한 존재한다. 대부분의 연구들이 현물자산의 균형가격결정모형에 이자율평가설을 추가로 결합하기 때문에 이러한 방법으로 설정한 분석모형은 그 기초가 되는 현물가격모형과는 달리 자의적 조작이 가능한 형태로 나타나며 이를 이용한 모수의 추정은 불필요한 편기(bias)를 가지게 된다. 본 연구에서는 이러한 실증분석상의 편기에 관한 문제점이 명확하고 구체적으로 나타나는 Mark(1985)의 실증연구를 재분석하고 실증자료를 통하여 위험회피도의 추정치에 편기가 발생하는 근본원인이 이자율평가설을 부적절하게 사용하는데 있다는 것을 확인 하고자 한다. 실증분석결과는 본문의 <표 1>에 제시되어 있으며 그 내용을 간략하게 요약하면 다음과 같다. (A) 실증분석모형 : 본 연구에서는 다기간 자산가격결정모형중에서 대표적인 Lucas (1978)모형을 직접 사용한다. $$1={\beta}\;E_t[\frac{U'(C_{t+1})\;P_t\;s_{t+1}}{U'(C_t)\;P_{t+1}\;s_t}]$$ (2) $U'(c_t)$와 $P_t$는 t시점에서의 소비에 대한 한계효용과 소비재의 가격을, $s_t$와 $f_t$는 외환의 현물과 선도가격을, $E_t$와 ${\beta}$는 조건부 기대치와 시간할인계수를 나타낸다. Mark는 위의 식 (2)를 이자율평가설과 결합한 다음의 모형 (4)를 사용한다. $$0=E_t[\frac{U'(C_{t+1})\;P_t\;(s_{t+1}-f_t)}{U'(C_t)\;P_{t+1}\;s_t}]$$ (4) (B) 실증분석의 결과 위험회피계수 ${\gamma}$의 추정치 : Mark의 경우에는 ${\gamma}$의 추정치의 값이 0에서 50.38까지 매우 큰 폭의 변화를 보이고 있다. 특히 비내구성제품의 소비량과 선도프레미엄을 사용한 경우 ${\gamma}$의 추정치의 값은 17.51로 비정상적으로 높게 나타난다. 반면에 본 연구에서는 추정치가 1.3으로 주식시장자료를 사용한 다른 연구결과와 비슷한 수준이다. ${\gamma}$추정치의 정확도 : Mark에서는 추정치의 표준오차가 최소 15.65에서 최대 42.43으로 매우 높은 반면 본 연구에서는 0.3에서 0.5수준으로 상대적으로 매우 정확한 추정 결과를 보여주고 있다. 모형의 정확도 : 모형 (4)에 대한 적합도 검증은 시용된 도구변수(instrumental variables)의 종류에 따라 크게 차이가 난다. 시차변수(lagged variables)를 사용하지 않고 현재소비와 선도프레미엄만을 사용할 경우 모형 (4)는 2.8% 또는 2.3% 유의수준에서 기각되는 반면 모형 (2)는 5% 유의수준에서 기각되지 않는다. 위와같은 실증분석의 결과는 앞서 논의한 바와 같이 이자율평가설을 사용하여 균형자산가격 결정모형을 변형시킴으로써 불필요한 편기를 발생시킨다는 것을 명확하게 보여주는 것이다.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.5
/
pp.372-379
/
2017
Software reliability factor during the software development process is elementary. Case of the infinite failure NHPP for identifying software failure, the occurrence rates per fault (hazard function) have the characteristic point that is constant, increases and decreases. In this paper, we propose a reliability model using the chi - square distribution which depends on the degree of freedom that represents the application efficiency of software reliability. Algorithm to estimate the parameters used to the maximum likelihood estimator and bisection method, a model selection based on the mean square error (MSE) and coefficient of determination($R^2$), for the sake of the efficient model, were employed. For the reliability model using the proposed degree of freedom of the chi - square distribution, the failure analysis using the actual failure interval data was applied. Fault data analysis is compared with the intensity function using the degree of freedom of the chi - square distribution. For the insurance about the reliability of a data, the Laplace trend test was employed. In this study, the chi-square distribution model depends on the degree of freedom, is also efficient about reliability because have the coefficient of determination is 90% or more, in the ground of the basic model, can used as a applied model. From this paper, the software development designer must be applied life distribution by the applied basic knowledge of the software to confirm failure modes which may be applied.
KSCE Journal of Civil and Environmental Engineering Research
/
v.38
no.4
/
pp.579-586
/
2018
Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.