• Title/Summary/Keyword: 비모수적 추정

Search Result 344, Processing Time 0.027 seconds

Nonparametric Test of Net Economic Benefits by Open-Ended and Closed-Ended Contingent Valuations : An Application to Downhill Skiing in Muju, Korea (개방형(開放型)과 폐쇄형질문(閉鎖型質問)에 의한 Contingent Valuation의 순경제적(純經濟的) 가치평가(價値評價)에 대한 비모수적검정(非母數的檢定) : 무주리조트 스키장의 사례(事例))

  • Han, Sang Yoel;Choi, Kwan;Colletti, Joe P.
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.9-16
    • /
    • 1997
  • The contingent valuation method(CVM) has been used to evaluate the economic value of nonmarket goods such as forest recreation. There are two commonly used CVM questionnaire formats: open-ended and closed-ended. This study evaluates the net economic value associated with day use downhill skiing, using CVM. A random, on-site survey of skiers in Muju, Korea generated the value estimates. In this paper a nonparametric test is introduced to find whether the difference between value estimates from open-ended and closed-ended formats are significantly different because the distributions of WTPs are non-normally distributed. The results show that the net economic benefits of a skier in Muju varies from \15,131 to \25,332. The closed-ended values were 1.15 to 1.67 times as large as the open-ended values, depending on the model specifications. In nonparametric test the mean WTPs of the open-ended and close-ended applications are significantly different. Its reason may be that closed-ended can be more reducing the incentive for strategic behavior than open-ended question. However, we cannot conclude that the closed-ended method is superior to the open-ended method.

  • PDF

Selection of bandwidth for local linear composite quantile regression smoothing (국소 선형 복합 분위수 회귀에서의 평활계수 선택)

  • Jhun, Myoungshic;Kang, Jongkyeong;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.733-745
    • /
    • 2017
  • Local composite quantile regression is a useful non-parametric regression method widely used for its high efficiency. Data smoothing methods using kernel are typically used in the estimation process with performances that rely largely on the smoothing parameter rather than the kernel. However, $L_2$-norm is generally used as criterion to estimate the performance of the regression function. In addition, many studies have been conducted on the selection of smoothing parameters that minimize mean square error (MSE) or mean integrated square error (MISE). In this paper, we explored the optimality of selecting smoothing parameters that determine the performance of non-parametric regression models using local linear composite quantile regression. As evaluation criteria for the choice of smoothing parameter, we used mean absolute error (MAE) and mean integrated absolute error (MIAE), which have not been researched extensively due to mathematical difficulties. We proved the uniqueness of the optimal smoothing parameter based on MAE and MIAE. Furthermore, we compared the optimal smoothing parameter based on the proposed criteria (MAE and MIAE) with existing criteria (MSE and MISE). In this process, the properties of the proposed method were investigated through simulation studies in various situations.

Nonparametric estimation of the discontinuous variance function using adjusted residuals (잔차 수정을 이용한 불연속 분산함수의 비모수적 추정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • In usual, the discontinuous variance function was estimated nonparametrically using a kernel type estimator with data sets split by an estimated location of the change point. Kang et al. (2000) proposed the Gasser-$M{\ddot{u}}ller$ type kernel estimator of the discontinuous regression function using the adjusted observations of response variable by the estimated jump size of the change point in $M{\ddot{u}}ller$ (1992). The adjusted observations might be a random sample coming from a continuous regression function. In this paper, we estimate the variance function using the Nadaraya-Watson kernel type estimator using the adjusted squared residuals by the estimated location of the change point in the discontinuous variance function like Kang et al. (2000) did. The rate of convergence of integrated squared error of the proposed variance estimator is derived and numerical work demonstrates the improved performance of the method over the exist one with simulated examples.

Modeling of High Density of Ozone in Seoul Area with Non-Linear Regression (비선형 회귀 모형을 이용한 서울지역 오존의 고농도 현상의 모형화)

  • Chung, Soo-Yeon;Cho, Ki-Heon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.865-877
    • /
    • 2009
  • While characterized initially as an urban-scale pollutant, ozone has increasingly been recognized as a regional and even global-scale phenomenon. The complexity of environmental data dynamics often requires models covering non-linearity. This study deals with modeling ozone with meteorology in Seoul area. The relationships are used to construct a nonlinear regression model relating ozone to meteorology. The model can be used to estimate that part of the trend in ozone levels that cannot be accounted for by trends in meteorology.

Long-term Energy Demand Forecast in Korea Using Functional Principal Component Analysis (함수 주성분 분석을 이용한 한국의 장기 에너지 수요예측)

  • Choi, Yongok;Yang, Hyunjin
    • Environmental and Resource Economics Review
    • /
    • v.28 no.3
    • /
    • pp.437-465
    • /
    • 2019
  • In this study, we propose a new method to forecast long-term energy demand in Korea. Based on Chang et al. (2016), which models the time varying long-run relationship between electricity demand and GDP with a function coefficient panel model, we design several schemes to retain objectivity of the forecasting model. First, we select the bandwidth parameters for the income coefficient based on the out-of-sample forecasting performance. Second, we extend the income coefficient using the functional principal component analysis method. Third, we proposed a method to reflect the elasticity change patterns inherent in Korea. In the empirical analysis part, we forecasts the long-term energy demand in Korea using the proposed method to show that the proposed method generates more stable long term forecasts than the existing methods.

The Bayesian Inference for Software Reliability Models Based on NHPP (NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 베이지안 추론에 관한 연구)

  • Lee, Sang-Sik;Kim, Hui-Cheol;Song, Yeong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.389-398
    • /
    • 2002
  • Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process(NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP ; expressions are given for several performance measure. Actual software failure data are compared with several model on the constant reflecting the quality of testing. The performance measures and parametric inferences of the suggested models using Rayleigh distribution and Laplace distribution are discussed. The results of the suggested models are applied to real software failure data and compared with Goel model. Tools of parameter point inference and 95% credible intereval was used method of Gibbs sampling. In this paper, model selection using the sum of the squared errors was employed. The numerical example by NTDS data was illustrated.

Confidence Interval Estimation of the Earthquake Magnitude for Seismic Design using the KMA Earthquake Data (기상청 지진 자료를 이용한 내진설계 지진규모의 신뢰구간 추정)

  • Cho, Hong Yeon;Lee, Gi-Seop
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.62-66
    • /
    • 2017
  • The interest on the potential earthquake magnitude and the request on the earthquake-resistant design examination for coastal structures are emerged because of the recently occurred magnitude 5.8 earthquake in Gyeoung-Ju, Korea. In this study, the magnitude and its confidence intervals with the return periods are estimated using the KMA earthquake magnitude data (over 3.5 and 4.0 in magnitude) by the non-parametric extreme value analysis. In case of using the "over 4.0" data set, the estimated magnitudes on the 50- and 100-years return periods are 5.81 and 5.94, respectively. Their 90% confidence intervals are estimated to be 5.52-6.11, 5.62-6.29, respectively. Even though the estimated magnitudes have limitations not considering the spatial distribution, it can be used to check the stability of the diverse coastal structures in the perspective of the life design because the potential magnitude and its confidence intervals in Korea are estimated based on the available 38-years data by the extreme value analysis.

The Study for ENHPP Software Reliability Growth Model Based on Kappa(2) Coverage Function (Kappa(2) 커버리지 함수를 이용한 ENHPP 소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2311-2318
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. Accurate predictions of software release times, and estimation of the reliability and availability of a software product require Release times of a critical element of the software testing process : test coverage. This model called Enhanced non-homogeneous Poission process(ENHPP). In this paper, exponential coverage and S-shaped model was reviewed, proposes the Kappa coverage model, which make out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE statistics and Kolmogorov distance, for the sake of efficient model, was employed. Numerical examples using real data set for the sake of proposing Kappa coverage model was employed. This analysis of failure data compared with the Kappaa coverage model and the existing model(using arithmetic and Laplace trend tests, bias tests) is presented.

Understanding Bayesian Experimental Design with Its Applications (베이지안 실험계획법의 이해와 응용)

  • Lee, Gunhee
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1029-1038
    • /
    • 2014
  • Bayesian experimental design is a useful concept in applied statistics for the design of efficient experiments especially if prior knowledge in the experiment is available. However, a theoretical or numerical approach is not simple to implement. We review the concept of a Bayesian experiment approach for linear and nonlinear statistical models. We investigate relationships between prior knowledge and optimal design to identify Bayesian experimental design process characteristics. A balanced design is important if we do not have prior knowledge; however, prior knowledge is important in design and expert opinions should reflect an efficient analysis. Care should be taken if we set a small sample size with a vague improper prior since both Bayesian design and non-Bayesian design provide incorrect solutions.

Probability Theory-based Flood Vulnerability for Agricultural Reservoirs under Climate Change (기후변화 대응 농업용 저수지의 확률론 기반 홍수 취약성 산정)

  • Park, Jihoon;Kang, Moon Seong;Song, Jung-Hun;Jun, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.346-346
    • /
    • 2017
  • 기후변화에 따른 기상이변의 동시다발적인 발현은 농촌 지역의 홍수 발생 빈도를 증가시키고 있다. 현재의 기후시스템은 과거의 강우빈도를 기준으로 산정한 설계기준을 벗어나는 강우 사상을 빈번하게 발생시키므로 설계변수의 불확실성을 보다 합리적인 방법으로 정량화할 필요가 있다. 본 연구의 목적은 기후변화에 대응하여 확률론을 이용한 농업용 저수지의 홍수 취약성을 산정하는 데 있다. 먼저 홍수 취약성 해석에 필요한 과거와 미래 수문 자료를 수집하고 전처리 과정을 통해 해석에 적합한 자료로 구축하였다. 설계변수의 불확실성을 분석하기 위해 지속시간별 최대강우량, 유입 설계홍수량에 대해 부트스트랩 (bootstrap) 기법을 적용하여 자료를 재추출하였다. 부트스트 랩은 표본집단의 확률분포에 대해 가정을 하지 않고 표본집단의 통계적 특성을 이용하여 모집단의 통계적 추론을 할 수 있는 비모수적인 리샘플링 기법이다. 부트스트랩 추론은 표본집단의 추정치, 편의, 표준오차를 산정하고 신뢰구간을 추정한다. 부트스트랩 추론을 통해 산정하는 신뢰수준을 이용하여 농업용 저수지의 홍수 취약성을 산정하였다. 본 연구는 설계변수에 내재하는 불확실성을 부트스트랩 기법을 이용하여 정량화하고 확률적인 값을 가지는 홍수 취약성으로 산정하여 제시할 수 있다.

  • PDF