• Title/Summary/Keyword: 비모수적 추정

Search Result 344, Processing Time 0.025 seconds

Hydrologic Response Estimation Using Mallows' $C_L$ Statistics (Mallows의 $C_L$ 통계량을 이용한 수문응답 추정)

  • Seong, Gi-Won;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.437-445
    • /
    • 1999
  • The present paper describes the problem of hydrologic response estimation using non-parametric ridge regression method. The method adapted in this work is based on the minimization of the $C_L$ statistics, which is an estimate of the mean square prediction error. For this method, effects of using both the identity matrix and the Laplacian matrix were considered. In addition, we evaluated methods for estimating the error variance of the impulse response. As a result of analyzing synthetic and real data, a good estimation was made when the Laplacian matrix for the weighting matrix and the bias corrected estimate for the error variance were used. The method and procedure presented in present paper will play a robust and effective role on separating hydrologic response.

  • PDF

Generalized Maximum Entropy Estimator for the Linear Regression Model with a Spatial Autoregressive Disturbance (오차항이 SAR(1)을 따르는 공간선형회귀모형에서 일반화 최대엔트로피 추정량에 관한 연구)

  • Cheon, Soo-Young;Lim, Seong-Seop
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • This paper considers a linear regression model with a spatial autoregressive disturbance with ill-posed data and proposes the generalized maximum entropy(GME) estimator of regression coefficients. The performance of this estimator is investigated via Monte Carlo experiments. The results show that the GME estimator provides efficient and robust estimate for the unknown parameter.

Pattern-Mixture Model of the Cox Proportional Hazards Model with Missing Binary Covariates (결측이 있는 이산형 공변량에 대한 Cox비례위험모형의 패턴-혼합 모델)

  • Youk, Tae-Mi;Song, Ju-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.279-291
    • /
    • 2012
  • When fitting a Cox proportional hazards model with missing covariates, it is inefficient to exclude observations with missing values in the analysis. Furthermore, if the missing-data mechanism is not Missing Completely At Random(MCAR), it may lead to biased parameter estimation. Many approaches have been suggested to handle the Cox proportional hazards model when covariates are sometimes missing, but they are based on the selection model. This paper suggest an approach to handle Cox proportional hazards model with missing covariates by using the pattern-mixture model (Little, 1993). The pattern-mixture model is expressed by the joint distribution of survival time and the missing-data mechanism. In the pattern-mixture model, many models can be considered by setting up various restrictions, and different results under various restrictions indicate the sensitivity of the model due to missing covariates. A simulation study was conducted to show the sensitivity of parameter estimation under different restrictions in a pattern-mixture model. The proposed approach was also applied to mouse leukemia data.

A Test of the Rank Conditions in the Simultaneous Equation Models (연립방정식 모형의 계수조건 검정법 제안)

  • So, Sun-Ha;Park, You-Sung;Lee, Dong-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.115-125
    • /
    • 2009
  • Simultaneous equation models, which are widely used in business and economic areas, generally consist of endogenous variables determined within models and exogenous variables externally determined and in the simultaneous equations model framework there are rank and order conditions for the model identification and the existence of unique solutions. By contrast, their estimating results have less efficiencies and furthermore do not exist, since the most estimating procedures are performed under the assumptions for rank and order conditions. We propose the new statistical test for sufficiency of the rank condition under the order condition, and show the asymptotic properties for the test. The Monte Carlo simulation studies are achieved in order to evaluate its power and to suggest the baseline for satisfying the rank conditions.

A Modified Diffusion Model Considering Autocorrelated Disturbances: Applications on CT Scanners and FPD TVs (자기상관 오차항을 고려한 수정된 확산모형: CT-스캐너와 FPD TV에의 응용)

  • Cha, Kyoung Cheon;Kim, Sang-Hoon
    • Asia Marketing Journal
    • /
    • v.11 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • Estimating the Bass diffusion model often creates a time-interval bias, which leads the OLS approach to overestimate sales at early stages and underestimate sales after the peak. Further, a specification error from omitted variables might raise serial correlations among residuals when marketing actions are not incorporated into the diffusion model. Autocorrelated disturbances may yield unbiased but inefficient estimation, and therefore invalid inference results. This phenomenon warrants a modified approach to estimating the Bass diffusion model. In this paper, the authors propose a modified Bass diffusion model handling autocorrelated disturbances. To validate the new approach, authors applied the method on two different data-sets: CT Scanners in the U.S, and FPD TV sales in Korea. The results showed improved model fit and the validity of the proposed model.

  • PDF

Generalized Linear Mixed Model for Multivariate Multilevel Binomial Data (다변량 다수준 이항자료에 대한 일반화선형혼합모형)

  • Lim, Hwa-Kyung;Song, Seuck-Heun;Song, Ju-Won;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.923-932
    • /
    • 2008
  • We are likely to face complex multivariate data which can be characterized by having a non-trivial correlation structure. For instance, omitted covariates may simultaneously affect more than one count in clustered data; hence, the modeling of the correlation structure is important for the efficiency of the estimator and the computation of correct standard errors, i.e., valid inference. A standard way to insert dependence among counts is to assume that they share some common unobservable variables. For this assumption, we fitted correlated random effect models considering multilevel model. Estimation was carried out by adopting the semiparametric approach through a finite mixture EM algorithm without parametric assumptions upon the random coefficients distribution.

Initialization of Fuzzy C-Means Using Kernel Density Estimation (커널 밀도 추정을 이용한 Fuzzy C-Means의 초기화)

  • Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1659-1664
    • /
    • 2011
  • Fuzzy C-Means (FCM) is one of the most widely used clustering algorithms and has been used in many applications successfully. However, FCM has some shortcomings and initial prototype selection is one of them. As FCM is only guaranteed to converge on a local optimum, different initial prototype results in different clustering. Therefore, much care should be given to the selection of initial prototype. In this paper, a new initialization method for FCM using kernel density estimation (KDE) is proposed to resolve the initialization problem. KDE can be used to estimate non-parametric data distribution and is useful in estimating local density. After KDE, in the proposed method, one initial point is placed at the most dense region and the density of that region is reduced. By iterating the process, initial prototype can be obtained. The initial prototype such obtained showed better result than the randomly selected one commonly used in FCM, which was demonstrated by experimental results.

Comparison of GEE Estimation Methods for Repeated Binary Data with Time-Varying Covariates on Different Missing Mechanisms (시간-종속적 공변량이 포함된 이분형 반복측정자료의 GEE를 이용한 분석에서 결측 체계에 따른 회귀계수 추정방법 비교)

  • Park, Boram;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.697-712
    • /
    • 2013
  • When analyzing repeated binary data, the generalized estimating equations(GEE) approach produces consistent estimates for regression parameters even if an incorrect working correlation matrix is used. However, time-varying covariates experience larger changes in coefficients than time-invariant covariates across various working correlation structures for finite samples. In addition, the GEE approach may give biased estimates under missing at random(MAR). Weighted estimating equations and multiple imputation methods have been proposed to reduce biases in parameter estimates under MAR. This article studies if the two methods produce robust estimates across various working correlation structures for longitudinal binary data with time-varying covariates under different missing mechanisms. Through simulation, we observe that time-varying covariates have greater differences in parameter estimates across different working correlation structures than time-invariant covariates. The multiple imputation method produces more robust estimates under any working correlation structure and smaller biases compared to the other two methods.

Robust Discriminant Analysis using Minimum Disparity Estimators

  • 조미정;홍종선;정동빈
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.135-140
    • /
    • 2004
  • Lindsay and Basu (1994)에 의해 소개된 최소차이추정량 (Minimum Disparity Estimators)들은 실제 자료 분석 도구로써 유용하다. 본 논문에서는 최소일반화음지수 차이추정량 (Minimum Generalized Negative Exponential Disparity Estimator, MGNEDE)이 최대가능도추정량 (Maximum Likelihood Estimator, MLE)와 최소가중 헬링거거리추정량 (Minimum Blended Weight Hellinger Distance Estimator, MBWHDE)에 비해 오염된 정규모형에서 효율적이고 로버스트하다는 것을 모의실험을 통하여 확인하였다. 또한 세 가지 추정량들에 의해 추정된 모수들을 이용하여 판별하였을 때 자 추정량득의 판별율을 비교함으로써 오염된 정규모형에서 MLE의 대안으로 MGNEDE와 MBWHDE를 사용할 수 있음을 보였다.

  • PDF

Simulation Study for Statistical Methods in Comparing Cure Rates between Two Groups (모의실험을 통한 두 처리군간 치료율 비교방법 연구)

  • 박미라;이재원;진서훈
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.253-267
    • /
    • 2004
  • In some clinical trials, one may see that a significant fraction of patients are cured and their original disease does not recur even after termination of treatment and pro-longed follow-up. This situation occurs frequently in pediatric cancer trials where there are excellent therapeutic results. In such cases, interest concentrated on the difference of cure rates rather than other types of differences in failure distributions. Various authors have investigated the parametric and nonparametric methods for testing the difference of cure rates. In this study, we compare by simulation the power and size of a parametric test and five nonparametric tests in a various range of the alternatives, censoring rates and cure rates. Our objectives are to determine if any test was preferable on the basis of size and power in various situation, and to investigate the effect of the model misspecification.