• Title/Summary/Keyword: 비모수적 추정

Search Result 344, Processing Time 0.022 seconds

Performance Comparison of Cumulative Incidence Estimators in the Presence of Competing Risks (경쟁위험 하에서의 누적발생함수 추정량 성능 비교)

  • Kim, Dong-Uk;Ahn, Chi-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.357-371
    • /
    • 2007
  • For the time-to-failure data with competing risks, cumulative incidence functions (CIFs) are commonly estimated using nonparametric methods. If the cases of events due to the cause of primary interest are infrequent relative to other cause of failure, nonparametric methods may result in rather imprecise estimates for CIF. In such cases, Bryant et al. (2004) suggested to model the cause-specific hazard of primary interest parametrically, while accounting for the other modes of failure using nonparametric estimator. We represented the semiparametric cumulative incidence estimator and extended to the model of Weibull and log-normal distribution. We also conducted simulations to access the performance of the semiparametric cumulative incidence estimators and to investigate the impact of model misspecification in log-normal cause-specific hazard model.

임의중단모형에서 신뢰도의 비모수적 통합형 추정량

  • 이재만;차영준;장덕준
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.685-694
    • /
    • 1998
  • 임상실험이나 신뢰성공학 분야에서 임의 중단자료를 이용한 비모수적 신뢰도 추정량으로 Kaplan-Meier 추정량과 Nelson형 추정량이 많이 사용되고 있다. 그러나 Nelson형 추정량은 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 우수한 반면 편의는 신뢰도가 감소함에 따라 양의 방향으로 점증하는 소표본 특성을 갖는다. Nelson형 추정량의 이러한 특성 때문에 신뢰도의 함수로 표현되는 잔여수명 분위수함수 등의 추정시에는 평균제곱오차의 관점에서 Kaplan-Meier 추정량보다 추정능력이 떨어짐을 볼 수 있다. 이러한 점을 고려하여 이 두 추정량을 가중평균으로 통합한 새로운 비모수적 신뢰도 추정량을 제안하고 추정량의 특성을 비교 분석하였다.

  • PDF

Parametric nonparametric methods for estimating extreme value distribution (극단값 분포 추정을 위한 모수적 비모수적 방법)

  • Woo, Seunghyun;Kang, Kee-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.531-536
    • /
    • 2022
  • This paper compared the performance of the parametric method and the nonparametric method when estimating the distribution for the tail of the distribution with heavy tails. For the parametric method, the generalized extreme value distribution and the generalized Pareto distribution were used, and for the nonparametric method, the kernel density estimation method was applied. For comparison of the two approaches, the results of function estimation by applying the block maximum value model and the threshold excess model using daily fine dust public data for each observatory in Seoul from 2014 to 2018 are shown together. In addition, the area where high concentrations of fine dust will occur was predicted through the return level.

Study on Variability of WTP Estimates by the Estimation Methods using Dichotomous Choice Contingent Valuation Data (양분선택형 조건부가치측정(CV) 자료의 추정방법에 따른 지불의사금액의 변동성 연구)

  • Shin, Youngchul
    • Environmental and Resource Economics Review
    • /
    • v.25 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • This study investigated the variability of WTP estimates(i.e. mean or median) with ad hoc assumptions of specific parametric probability distributions(i.e. normal, logistic, lognormal, and exponential distribution) to estimate WTP function using dichotomous choice CV data on mortality risk reduction. From the perspective of policy decision, the variability of these WTP estimates are intolerable in comparison with those of Turnbull nonparametric estimation method which is free from ad hoc distribution assumptions. The Turnbull nonparametric estimation can avoid a kind of misspecification bias due to ad hoc assumption of specific parametric distributions. Furthermore, the WTP estimates by Turnbull nonparametric estimation are robust because the similar estimates are elicited from a dichotomous choice or double dichotomous choice CV data, and the statistically significant WTP estimates can be obtained even though it is not possible by parametric estimation methods. If there are considerable variability among those WTP estimates by parametric estimation methods in condition with no criteria of model adequacy, the mean WTPs from Turnbull nonparametric estimation can be the robust estimates without ad hoc assumptions, which can avoid controversial issues in the perspective of policy decisions.

Semiparametric and Nonparametric Mixed Effects Models for Small Area Estimation (비모수와 준모수 혼합모형을 이용한 소지역 추정)

  • Jeong, Seok-Oh;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.71-79
    • /
    • 2013
  • Semiparametric and nonparametric small area estimations have been studied to overcome a large variance due to a small sample size allocated in a small area. In this study, we investigate semiparametric and nonparametric mixed effect small area estimators using penalized spline and kernel smoothing methods respectively and compare their performances using labor statistics.

Comparison of Some Nonparametric Statistical Inference for Logit Model (로짓모형의 비모수적 추론의 비교)

  • 정형철;김대학
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.355-366
    • /
    • 2002
  • Nonparametric statistical inference for the parameter of logit model were examined. Usually nonparametric approach is milder than parametric approach based on normal theory assumption. We compared the two nonparametric methods for legit model, the bootstrap and random permutation in the sense of coverage probability. Monte Carlo simulation is conducted for small sample cases. Empirical power of hypothesis test and coverage probability for confidence interval estimation were presented for simple and multiple legit model respectively. An example were also introduced.

Comparison of estimation methods for expectile regression (평률 회귀분석을 위한 추정 방법의 비교)

  • Kim, Jong Min;Kang, Kee-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.343-352
    • /
    • 2018
  • We can use quantile regression and expectile regression analysis to estimate trends in extreme regions as well as the average trends of response variables in given explanatory variables. In this paper, we compare the performance between the parametric and nonparametric methods for expectile regression. We introduce each estimation method and analyze through various simulations and the application to real data. The nonparametric model showed better results if the model is complex and difficult to deduce the relationship between variables. The use of nonparametric methods can be recommended in terms of the difficulty of assuming a parametric model in expectile regression.

The Nonparametric Estimation of Interest Rate Model and the Pricing of the Market Price of Interest Rate Risk (비모수적 이자율모형 추정과 시장위험가격 결정에 관한 연구)

  • Lee, Phil-Sang;Ahn, Seong-Hark
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.73-94
    • /
    • 2003
  • In general, the interest rate is forecasted by the parametric method which assumes the interest rate follows a certain distribution. However the method has a shortcoming that forecasting ability would decline when the interest rate does not follow the assumed distribution for the stochastic behavior of interest rate. Therefore, the nonparametric method which assumes no particular distribution is regarded as a superior one. This paper compares the interest rate forecasting ability between the two method for the Monetary Stabilization Bond (MSB) market in Korea. The daily and weekly data of the MSB are used during the period of August 9th 1999 to February 7th 2003. In the parametric method, the drift term of the interest rate process shows the linearity while the diffusion term presents non-linear decline. Meanwhile in the nonparametric method, both drift and diffusion terms show the radical change with nonlinearity. The parametric and nonparametric methods present a significant difference in the market price of interest rate risk. This means in forecasting the interest rate and the market price of interest rate risk, the nonparametric method is more appropriate than the parametric method.

  • PDF

비모수 회귀모형의 차분에 기저한 분산의 추정에 대한 고찰

  • 김종태
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.121-131
    • /
    • 1998
  • 이 논문의 목적은 비모수 회귀모형에 있어서의 오차의 분산을 추정하는 방법들 중 차분에 기저한 방법 (difference-based methods)을 이용한 기존의 추정량들을 비교 분석하는데 있다. 특히 점근적인 최적 이차 차분에 기저한 Hall과 Kay, Titterington(1990)의 HKT 추정량에 대한 그들의 추정량에 대한 문제점들을 제시하고, HKT추정량과, GSJS추정량, Rice추정량에 대하여 모의 실험을 이용하여 모수에 대한 수렴 속도를 비교 분석 하였다. 또한 GSJS 추정량에 대한 일치성과 수렴 속도를 보였다.

  • PDF

자본자산가격의 운동법칙을 표상하는 연속시간 확률매분방정식의 추정방법 - 비시뮬레이션 방법 -

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.10 no.1
    • /
    • pp.1-44
    • /
    • 2004
  • 연속시간모형은 시간의 흐름에 대응되는 자본자산의 운동의 성질과 시간의 흐름에 따라 형성되는 자본자산의 가격을 동시적으로 파악할 수 있는 것이 큰 장점이다. 연속시간 확률미분방정식을 구성하는 표류함수와 확산함수가 폐형해나 해석적 형태로 존재하지 않는 경우가 대부분이다. 여기에서 모수추정의 어려움이 발생한다. 전이 확률밀도함수의 인지 또는 발견의 어려움과 표류함수와 확산함수의 적분 불가능성은 최대가능도법의 사용을 어렵게 만든다. 여기에서 모수방법 보다는 비모수방법을 통하여 연속 확률 미분방정식을 추정하려는 성향이 존재한다. 밀도를 모르면 표본적률을 사용하여 모수를 추정할 수 있으므로 일반화 적률법이 연속시간 확률미분방정식의 모수 추정과 검정에 사용되고 있다. 전이밀도의 값을 시뮬레이션을 통하여 얻는 마코브연쇄 몬테카를로 방법, 전이밀도를 무한소 생성작용소를 통하여 얻는 방법, 비 모수방법, 여러 종류의 전개에 의하여 얻은 표류함수와 확산함수의 전이밀도에 대한 최대가능도법 등 여러 종류의 연속시간 확률미분방정식의 실증분석에서 사용되고 있다. 이 논문에서는 연속시간 확률미분방정식의 실증분석 방법들을 정리하는데 목적이 있다. 이일균(2004)은 이 논문과의 자매논문으로 시뮬레이션에 의한 확률미분방정식의 추정을 다루고 있어 시뮬레이션방법은 그 논문에 미룬다.

  • PDF